Continuous Metadata in Continuous Integration, Stream Processing and Enterprise DataOps

IF 1.3 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
M. Underwood
{"title":"Continuous Metadata in Continuous Integration, Stream Processing and Enterprise DataOps","authors":"M. Underwood","doi":"10.1162/dint_a_00193","DOIUrl":null,"url":null,"abstract":"ABSTRACT Implementations of metadata tend to favor centralized, static metadata. This depiction is at variance with the past decade of focus on big data, cloud native architectures and streaming platforms. Big data velocity can demand a correspondingly dynamic view of metadata. These trends, which include DevOps, CI/CD, DataOps and data fabric, are surveyed. Several specific cloud native tools are reviewed and weaknesses in their current metadata use are identified. Implementations are suggested which better exploit capabilities of streaming platform paradigms, in which metadata is continuously collected in dynamic contexts. Future cloud native software features are identified which could enable streamed metadata to power real time data fusion or fine tune automated reasoning through real time ontology updates.","PeriodicalId":34023,"journal":{"name":"Data Intelligence","volume":"5 1","pages":"275-288"},"PeriodicalIF":1.3000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/dint_a_00193","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT Implementations of metadata tend to favor centralized, static metadata. This depiction is at variance with the past decade of focus on big data, cloud native architectures and streaming platforms. Big data velocity can demand a correspondingly dynamic view of metadata. These trends, which include DevOps, CI/CD, DataOps and data fabric, are surveyed. Several specific cloud native tools are reviewed and weaknesses in their current metadata use are identified. Implementations are suggested which better exploit capabilities of streaming platform paradigms, in which metadata is continuously collected in dynamic contexts. Future cloud native software features are identified which could enable streamed metadata to power real time data fusion or fine tune automated reasoning through real time ontology updates.
连续集成、流处理和企业数据操作中的连续元数据
摘要元数据的实现倾向于支持集中式的静态元数据。这种描述与过去十年对大数据、云原生架构和流媒体平台的关注不一致。大数据速度可能需要相应的元数据动态视图。调查了这些趋势,包括DevOps、CI/CD、DataOps和数据结构。审查了几个特定的云原生工具,并确定了它们当前元数据使用中的弱点。提出了更好地利用流媒体平台范式的功能的实现,其中元数据在动态上下文中不断收集。确定了未来的云原生软件功能,这些功能可以使流式元数据能够支持实时数据融合或通过实时本体更新微调自动推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Data Intelligence
Data Intelligence COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
6.50
自引率
15.40%
发文量
40
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信