Analytic Non-Labelled Proof-Systems for Hybrid Logic: Overview and a couple of striking facts

Q2 Arts and Humanities
T. Braüner
{"title":"Analytic Non-Labelled Proof-Systems for Hybrid Logic: Overview and a couple of striking facts","authors":"T. Braüner","doi":"10.18778/0138-0680.2022.02","DOIUrl":null,"url":null,"abstract":"This paper is about non-labelled proof-systems for hybrid logic, that is, proof-systems where arbitrary formulas can occur, not just satisfaction statements. We give an overview of such proof-systems, focusing on analytic systems: Natural deduction systems, Gentzen sequent systems and tableau systems. We point out major results and we discuss a couple of striking facts, in particular that non-labelled hybrid-logical natural deduction systems are analytic, but this is not proved in the usual way via step-by-step normalization of derivations.","PeriodicalId":38667,"journal":{"name":"Bulletin of the Section of Logic","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Section of Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18778/0138-0680.2022.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is about non-labelled proof-systems for hybrid logic, that is, proof-systems where arbitrary formulas can occur, not just satisfaction statements. We give an overview of such proof-systems, focusing on analytic systems: Natural deduction systems, Gentzen sequent systems and tableau systems. We point out major results and we discuss a couple of striking facts, in particular that non-labelled hybrid-logical natural deduction systems are analytic, but this is not proved in the usual way via step-by-step normalization of derivations.
混合逻辑的解析非标记证明系统:概述和几个惊人的事实
本文是关于混合逻辑的无标记证明系统,即可以出现任意公式的证明系统,而不仅仅是满足性陈述。我们对这类证明系统进行了概述,重点介绍了分析系统:自然演绎系统、根岑序系统和表系统。我们指出了主要的结果,并讨论了几个引人注目的事实,特别是未标记的混合逻辑自然演绎系统是解析的,但这并不是通过导数的逐步规范化以通常的方式证明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of the Section of Logic
Bulletin of the Section of Logic Arts and Humanities-Philosophy
CiteScore
0.90
自引率
0.00%
发文量
15
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信