Some remarks on the notion of Bohr chaos and invariant measures

IF 0.7 3区 数学 Q2 MATHEMATICS
Matan Tal
{"title":"Some remarks on the notion of Bohr chaos and invariant measures","authors":"Matan Tal","doi":"10.4064/sm230103-13-5","DOIUrl":null,"url":null,"abstract":"The notion of Bohr chaos was introduced in [3, 4]. We answer a question raised in [3] of whether a non uniquely ergodic minimal system of positive topological entropy can be Bohr chaotic. We also prove that all systems with the specification property are Bohr chaotic, and by this line of thought give an independent proof (and stengthening) of theorem 1 of [3] for the case of invertible systems. In addition, we present an obstruction for Bohr chaos: a system with fewer than a continuum of ergodic invariant probability measures cannot be Bohr chaotic.","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/sm230103-13-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

The notion of Bohr chaos was introduced in [3, 4]. We answer a question raised in [3] of whether a non uniquely ergodic minimal system of positive topological entropy can be Bohr chaotic. We also prove that all systems with the specification property are Bohr chaotic, and by this line of thought give an independent proof (and stengthening) of theorem 1 of [3] for the case of invertible systems. In addition, we present an obstruction for Bohr chaos: a system with fewer than a continuum of ergodic invariant probability measures cannot be Bohr chaotic.
关于玻尔混沌和不变测度概念的几点评述
玻尔混沌的概念是在[3,4]中引入的。我们回答了[3]中提出的一个问题,即正拓扑熵的非唯一遍历极小系统是否可以是玻尔混沌。我们还证明了所有具有规范性质的系统都是玻尔混沌的,并由此给出了[3]中定理1在可逆系统情况下的独立证明(和加强)。此外,我们还提出了玻尔混沌的一个障碍:一个具有少于遍历不变概率测度连续体的系统不可能是玻尔混沌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studia Mathematica
Studia Mathematica 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
72
审稿时长
5 months
期刊介绍: The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信