An interval version of the Kuntzmann-Butcher method for solving the initial value problem

IF 1.1 Q2 MATHEMATICS, APPLIED
A. Marciniak, B. Szyszka, Tomasz Hoffmann
{"title":"An interval version of the Kuntzmann-Butcher method for solving the initial value problem","authors":"A. Marciniak, B. Szyszka, Tomasz Hoffmann","doi":"10.22034/CMDE.2020.39203.1720","DOIUrl":null,"url":null,"abstract":"The Kutzmann-Butcher method is the unique implicit four-stage Runge-Kutta method of order 8. In many problems in ordinary differential equations this method realized in floating-point arithmetic gives quite good approximations to the exact solutions, but the results obtained do not contain any information on rounding errors, representation errors and the error of the method. Thus, we describe an interval version of this method, which realized in floating-point interval arithmetic gives approximations (enclosures in the form of interval) containing all these errors. The described method can also include data uncertainties in the intervals obtained.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.39203.1720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

The Kutzmann-Butcher method is the unique implicit four-stage Runge-Kutta method of order 8. In many problems in ordinary differential equations this method realized in floating-point arithmetic gives quite good approximations to the exact solutions, but the results obtained do not contain any information on rounding errors, representation errors and the error of the method. Thus, we describe an interval version of this method, which realized in floating-point interval arithmetic gives approximations (enclosures in the form of interval) containing all these errors. The described method can also include data uncertainties in the intervals obtained.
求解初值问题的区间型Kuntzmann-Butcher方法
库兹曼-布彻方法是唯一的隐式四阶段8阶龙格-库塔方法。在常微分方程的许多问题中,这种用浮点运算实现的方法对精确解给出了很好的近似,但所获得的结果不包含任何关于舍入误差、表示误差和方法误差的信息。因此,我们描述了这种方法的区间版本,它在浮点区间算术中实现,给出了包含所有这些错误的近似值(区间形式的封闭)。所描述的方法还可以在所获得的区间中包括数据不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信