Calculating Blood Pressure Based on Measured Heart Sounds

Q1 Mathematics
Lingguang Chen, Sean F. Wu, Yong Xu, W. Lyman, G. Kapur
{"title":"Calculating Blood Pressure Based on Measured Heart Sounds","authors":"Lingguang Chen, Sean F. Wu, Yong Xu, W. Lyman, G. Kapur","doi":"10.1142/S0218396X1750014X","DOIUrl":null,"url":null,"abstract":"The current standard technique for blood pressure determination is by using cuff/stethoscope, which is not suited for infants or children. Even for adults such an approach yields 60% accuracy with respect to intra-arterial blood pressure measurements. Moreover, it does not allow for continuous monitoring of blood pressure over 24 h and days. In this paper, a new methodology is developed that enables one to calculate the systolic and diastolic blood pressures continuously in a non-invasive manner based on the heart beats measured from the chest of a human being. To this end, we must separate the first and second heart sounds, known as S1 and S2, from the directly measured heart sound signals. Next, the individual characteristics of S1 and S2 must be identified and correlated to the systolic and diastolic blood pressures. It is emphasized that the material properties of a human being are highly inhomogeneous, changing from one organ to another, and the speed at which the heart sound signals propagate inside a human body cannot be determined precisely. Moreover, the exact locations from which the heart sounds are originated are unknown a priori, and must be estimated. As such, the computer model developed here is semi-empirical. Yet, validation results have demonstrated that this semi-empirical computer model can produce relatively robust and accurate calculations of the systolic and diastolic blood pressures with high statistical merits.","PeriodicalId":54860,"journal":{"name":"Journal of Computational Acoustics","volume":"25 1","pages":"1750014"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S0218396X1750014X","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218396X1750014X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

Abstract

The current standard technique for blood pressure determination is by using cuff/stethoscope, which is not suited for infants or children. Even for adults such an approach yields 60% accuracy with respect to intra-arterial blood pressure measurements. Moreover, it does not allow for continuous monitoring of blood pressure over 24 h and days. In this paper, a new methodology is developed that enables one to calculate the systolic and diastolic blood pressures continuously in a non-invasive manner based on the heart beats measured from the chest of a human being. To this end, we must separate the first and second heart sounds, known as S1 and S2, from the directly measured heart sound signals. Next, the individual characteristics of S1 and S2 must be identified and correlated to the systolic and diastolic blood pressures. It is emphasized that the material properties of a human being are highly inhomogeneous, changing from one organ to another, and the speed at which the heart sound signals propagate inside a human body cannot be determined precisely. Moreover, the exact locations from which the heart sounds are originated are unknown a priori, and must be estimated. As such, the computer model developed here is semi-empirical. Yet, validation results have demonstrated that this semi-empirical computer model can produce relatively robust and accurate calculations of the systolic and diastolic blood pressures with high statistical merits.
根据测量的心音计算血压
目前的血压测定标准技术是使用袖带/听诊器,这不适合婴儿或儿童。即使对于成年人来说,这种方法在动脉内血压测量方面也能产生60%的准确率。此外,它不允许在24小时和24天内连续监测血压。在这篇论文中,开发了一种新的方法,使人们能够根据从人类胸部测量的心跳,以非侵入性的方式连续计算收缩压和舒张压。为此,我们必须从直接测量的心音信号中分离出第一和第二心音,即S1和S2。接下来,必须识别S1和S2的个体特征,并将其与收缩压和舒张压相关联。人们强调,人的物质特性是高度不均匀的,从一个器官到另一个器官都在变化,心音信号在人体内传播的速度无法精确确定。此外,心音产生的确切位置是先验未知的,必须进行估计。因此,这里开发的计算机模型是半经验的。然而,验证结果表明,这种半经验计算机模型可以产生相对稳健和准确的收缩压和舒张压计算,具有很高的统计优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
4.5 months
期刊介绍: Currently known as Journal of Theoretical and Computational Acoustics (JTCA).The aim of this journal is to provide an international forum for the dissemination of the state-of-the-art information in the field of Computational Acoustics. Topics covered by this journal include research and tutorial contributions in OCEAN ACOUSTICS (a subject of active research in relation with sonar detection and the design of noiseless ships), SEISMO-ACOUSTICS (of concern to earthquake science and engineering, and also to those doing underground prospection like searching for petroleum), AEROACOUSTICS (which includes the analysis of noise created by aircraft), COMPUTATIONAL METHODS, and SUPERCOMPUTING. In addition to the traditional issues and problems in computational methods, the journal also considers theoretical research acoustics papers which lead to large-scale scientific computations. The journal strives to be flexible in the type of high quality papers it publishes and their format. Equally desirable are Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational acoustics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research in which other than strictly computational arguments may be important in establishing a basis for further developments. Tutorial review papers, covering some of the important issues in Computational Mathematical Methods, Scientific Computing, and their applications. Short notes, which present specific new results and techniques in a brief communication. The journal will occasionally publish significant contributions which are larger than the usual format for regular papers. Special issues which report results of high quality workshops in related areas and monographs of significant contributions in the Series of Computational Acoustics will also be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信