Hierarchical3D Adapters for Long Video-to-text Summarization

Pinelopi Papalampidi, Mirella Lapata
{"title":"Hierarchical3D Adapters for Long Video-to-text Summarization","authors":"Pinelopi Papalampidi, Mirella Lapata","doi":"10.48550/arXiv.2210.04829","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on video-to-text summarization and investigate how to best utilize multimodal information for summarizing long inputs (e.g., an hour-long TV show) into long outputs (e.g., a multi-sentence summary). We extend SummScreen (Chen et al., 2022), a dialogue summarization dataset consisting of transcripts of TV episodes with reference summaries, and create a multimodal variant by collecting corresponding full-length videos. We incorporate multimodal information into a pre-trained textual summarizer efficiently using adapter modules augmented with a hierarchical structure while tuning only 3.8% of model parameters. Our experiments demonstrate that multimodal information offers superior performance over more memory-heavy and fully fine-tuned textual summarization methods.","PeriodicalId":73025,"journal":{"name":"Findings (Sydney (N.S.W.)","volume":"1 1","pages":"1267-1290"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Findings (Sydney (N.S.W.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.04829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we focus on video-to-text summarization and investigate how to best utilize multimodal information for summarizing long inputs (e.g., an hour-long TV show) into long outputs (e.g., a multi-sentence summary). We extend SummScreen (Chen et al., 2022), a dialogue summarization dataset consisting of transcripts of TV episodes with reference summaries, and create a multimodal variant by collecting corresponding full-length videos. We incorporate multimodal information into a pre-trained textual summarizer efficiently using adapter modules augmented with a hierarchical structure while tuning only 3.8% of model parameters. Our experiments demonstrate that multimodal information offers superior performance over more memory-heavy and fully fine-tuned textual summarization methods.
用于长视频到文本摘要的层次结构3D适配器
在本文中,我们专注于视频到文本的摘要,并研究如何最好地利用多模式信息将长输入(例如,一个小时长的电视节目)总结为长输出(例如,多句摘要)。我们扩展了SummScreen(Chen et al.,2022),这是一个对话摘要数据集,由电视集的转录本和参考摘要组成,并通过收集相应的全长视频创建了一个多模式变体。我们使用增强了层次结构的适配器模块,将多模式信息有效地结合到预先训练的文本汇总器中,同时仅调整3.8%的模型参数。我们的实验表明,与记忆量更大、调整更精细的文本摘要方法相比,多模式信息提供了优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信