Large-step predictor-corrector interior point method for sufficient linear complementarity problems based on the algebraic equivalent transformation

IF 2.6 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Tibor Illés , Petra Renáta Rigó , Roland Török
{"title":"Large-step predictor-corrector interior point method for sufficient linear complementarity problems based on the algebraic equivalent transformation","authors":"Tibor Illés ,&nbsp;Petra Renáta Rigó ,&nbsp;Roland Török","doi":"10.1016/j.ejco.2023.100072","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a new predictor-corrector interior-point algorithm for solving <span><math><msub><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><mi>κ</mi><mo>)</mo></math></span>-linear complementarity problems which works in a wide neighbourhood of the central path. We use the technique of algebraic equivalent transformation of the centering equations of the central path system. In this technique, we apply the function <span><math><mi>φ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><msqrt><mrow><mi>t</mi></mrow></msqrt></math></span> in order to obtain the new search directions. We define the new wide neighbourhood <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>φ</mi></mrow></msub></math></span>. In this way, we obtain the first interior-point method, where not only the central path system is transformed, but the definition of the neighbourhood is also modified taking into consideration the algebraic equivalent transformation technique. This gives a new direction in the research of interior-point algorithms. We prove that the interior-point method has <span><math><mi>O</mi><mrow><mo>(</mo><mo>(</mo><mn>1</mn><mo>+</mo><mi>κ</mi><mo>)</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mrow><mo>(</mo><mfrac><mrow><msup><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>T</mi></mrow></msup><msup><mrow><mi>s</mi></mrow><mrow><mn>0</mn></mrow></msup></mrow><mrow><mi>ϵ</mi></mrow></mfrac><mo>)</mo></mrow><mo>)</mo></mrow></math></span> iteration complexity. Furthermore, we show the efficiency of the proposed predictor-corrector algorithm by providing numerical results. To our best knowledge, this is the first predictor-corrector interior-point algorithm which works in the <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>φ</mi></mrow></msub></math></span> neighbourhood using <span><math><mi>φ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><msqrt><mrow><mi>t</mi></mrow></msqrt></math></span>.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"11 ","pages":"Article 100072"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192440623000163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a new predictor-corrector interior-point algorithm for solving P(κ)-linear complementarity problems which works in a wide neighbourhood of the central path. We use the technique of algebraic equivalent transformation of the centering equations of the central path system. In this technique, we apply the function φ(t)=t in order to obtain the new search directions. We define the new wide neighbourhood Dφ. In this way, we obtain the first interior-point method, where not only the central path system is transformed, but the definition of the neighbourhood is also modified taking into consideration the algebraic equivalent transformation technique. This gives a new direction in the research of interior-point algorithms. We prove that the interior-point method has O((1+κ)nlog((x0)Ts0ϵ)) iteration complexity. Furthermore, we show the efficiency of the proposed predictor-corrector algorithm by providing numerical results. To our best knowledge, this is the first predictor-corrector interior-point algorithm which works in the Dφ neighbourhood using φ(t)=t.

基于代数等价变换的充分线性互补问题的大步长预测校正内点法
我们引入了一种新的预测校正内点算法,用于解决在中心路径的宽邻域中工作的P - (κ)-线性互补问题。利用中心路径系统定心方程的代数等价变换技术。在这种技术中,我们应用函数φ(t)=t来获得新的搜索方向。我们定义了新的宽邻域Dφ。通过这种方法,我们得到了第一种内点法,该方法不仅对中心路径系统进行了变换,而且利用代数等价变换技术对邻域的定义进行了修改。这为内点算法的研究提供了一个新的方向。我们证明了内点法具有O((1+κ)nlog ((x0) ts0λ))迭代复杂度。此外,我们通过提供数值结果来证明所提出的预测校正算法的有效性。据我们所知,这是第一个使用φ(t)=t在Dφ邻域中工作的预测校正内点算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EURO Journal on Computational Optimization
EURO Journal on Computational Optimization OPERATIONS RESEARCH & MANAGEMENT SCIENCE-
CiteScore
3.50
自引率
0.00%
发文量
28
审稿时长
60 days
期刊介绍: The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信