Pre-ignition phenomena in the tension field between operating agents and thermodynamic boundary conditions

Q4 Materials Science
Thomas Emmrich, K. Herrmann, M. Guenther
{"title":"Pre-ignition phenomena in the tension field between operating agents and thermodynamic boundary conditions","authors":"Thomas Emmrich, K. Herrmann, M. Guenther","doi":"10.24053/tus-2022-0026","DOIUrl":null,"url":null,"abstract":"Against the background of EU legislation with regard to CO2 emissions, a development trend towards higher geometric compression is emerging for gasoline engines. In principle, this leads – especially in combination with high mean pressure at low engine speed – to a higher pre-ignition tendency, well known as low speed pre-ignition (LSPI). The worldwide use of engine families with different fuel and oil quality represents an additional challenge, which has to be ensured within the scope of series development. IAV has extensive expertise and methodical approaches to minimize the risk of pre-ignition starting in the preliminary development through to series application and to avoid engine damage in the field. The definition and phenomenology of pre-ignition are presented. The presentation highlighted thermodynamic aspects as well as influences from operating agents and engine design. By using the IAV enthalpy approach, it is possible to evaluate designed engines objectively. This knowledge can also be used in the development of new engines concepts. Finally, a test method is presented which is used for the final assurance of the operational stability even in the case of stochastically occurring pre-ignition.","PeriodicalId":53690,"journal":{"name":"Tribologie und Schmierungstechnik","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribologie und Schmierungstechnik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24053/tus-2022-0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Against the background of EU legislation with regard to CO2 emissions, a development trend towards higher geometric compression is emerging for gasoline engines. In principle, this leads – especially in combination with high mean pressure at low engine speed – to a higher pre-ignition tendency, well known as low speed pre-ignition (LSPI). The worldwide use of engine families with different fuel and oil quality represents an additional challenge, which has to be ensured within the scope of series development. IAV has extensive expertise and methodical approaches to minimize the risk of pre-ignition starting in the preliminary development through to series application and to avoid engine damage in the field. The definition and phenomenology of pre-ignition are presented. The presentation highlighted thermodynamic aspects as well as influences from operating agents and engine design. By using the IAV enthalpy approach, it is possible to evaluate designed engines objectively. This knowledge can also be used in the development of new engines concepts. Finally, a test method is presented which is used for the final assurance of the operational stability even in the case of stochastically occurring pre-ignition.
操作剂间张力场的预燃现象及热力学边界条件
在欧盟关于二氧化碳排放的立法背景下,汽油发动机出现了更高几何压缩的发展趋势。原则上,这会导致更高的提前点火趋势,即所谓的低速提前点火(LSPI),尤其是与低发动机转速下的高平均压力相结合。在世界范围内使用具有不同燃料和机油质量的发动机系列是一个额外的挑战,必须在系列开发范围内确保这一点。IAV拥有丰富的专业知识和有条不紊的方法,可以在初步开发到系列应用期间最大限度地降低提前点火启动的风险,并避免发动机在现场损坏。介绍了自燃的定义和现象学。该演讲强调了热力学方面以及来自操作剂和发动机设计的影响。通过使用IAV焓法,可以客观地评估设计的发动机。这些知识也可以用于开发新的发动机概念。最后,提出了一种测试方法,即使在随机发生的提前点火的情况下,也可用于最终保证运行稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tribologie und Schmierungstechnik
Tribologie und Schmierungstechnik Materials Science-Surfaces, Coatings and Films
CiteScore
0.50
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信