Diyor Fayziev, P. Merzlyak, S. Rustamova, O. Khamidova, R. Kurbannazarova, R. Sabirov
{"title":"Effect of glycyrrhizin and its derivatives on integrity of human red blood cells","authors":"Diyor Fayziev, P. Merzlyak, S. Rustamova, O. Khamidova, R. Kurbannazarova, R. Sabirov","doi":"10.34172/jhp.2022.63","DOIUrl":null,"url":null,"abstract":"Introduction: The first and most prevailing cells that glycyrrhizin (GL) and glycyrrhetinic acid (GA) encounter are red blood cells (RBCs). However, what follows this event is poorly understood. This study aims to evaluate the effect of GL and its derivatives on the integrity of human RBCs. Methods: The integrity of human RBC was assessed under normal isotonic conditions and following osmotic and nystatin-induced colloid-osmotic stress by measuring the amount of hemoglobin released. The pore size was determined by the osmotic protection method. Results: GL was found to be virtually non-hemolytic. However, removal of the carbohydrate moiety of GL imparted significant RBC lytic activity to the cis-(beta-) but not to the trans-(alpha-) isoform of GA. The hemisuccinate radical at position C3 (carbenoxolone) greatly diminished the hemolytic property of GA. The RBC lysis occurred by colloid-osmotic mechanism due to the formation of hydrophilic pores with the radius of ~2.3 nm. At the sublytic doses, the two stereo-isoforms displayed opposite effects on the osmo-resistivity of human RBC: osmoprotection for alpha-GA and osmotic sensibilization for beta-GA. Similar osmotic sensibilization was also observed for GL and carbenoxolone. The two stereo-isoforms exhibited different but not opposite weakening effects on the resistivity of the RBC to the colloid-osmotic stress induced by nystatin, a pore-former. The weakening effect was found intermediate for GL and absent for carbenoxolone. Conclusion: Upon intestinal digestion and absorption, depending on the structure and dosage, the GL hydrolysis products interact with RBC with both beneficial and detrimental consequences.","PeriodicalId":15934,"journal":{"name":"Journal of HerbMed Pharmacology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of HerbMed Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/jhp.2022.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The first and most prevailing cells that glycyrrhizin (GL) and glycyrrhetinic acid (GA) encounter are red blood cells (RBCs). However, what follows this event is poorly understood. This study aims to evaluate the effect of GL and its derivatives on the integrity of human RBCs. Methods: The integrity of human RBC was assessed under normal isotonic conditions and following osmotic and nystatin-induced colloid-osmotic stress by measuring the amount of hemoglobin released. The pore size was determined by the osmotic protection method. Results: GL was found to be virtually non-hemolytic. However, removal of the carbohydrate moiety of GL imparted significant RBC lytic activity to the cis-(beta-) but not to the trans-(alpha-) isoform of GA. The hemisuccinate radical at position C3 (carbenoxolone) greatly diminished the hemolytic property of GA. The RBC lysis occurred by colloid-osmotic mechanism due to the formation of hydrophilic pores with the radius of ~2.3 nm. At the sublytic doses, the two stereo-isoforms displayed opposite effects on the osmo-resistivity of human RBC: osmoprotection for alpha-GA and osmotic sensibilization for beta-GA. Similar osmotic sensibilization was also observed for GL and carbenoxolone. The two stereo-isoforms exhibited different but not opposite weakening effects on the resistivity of the RBC to the colloid-osmotic stress induced by nystatin, a pore-former. The weakening effect was found intermediate for GL and absent for carbenoxolone. Conclusion: Upon intestinal digestion and absorption, depending on the structure and dosage, the GL hydrolysis products interact with RBC with both beneficial and detrimental consequences.
期刊介绍:
Journal of Herbmed Pharmacology (J Herbmed Pharmacol) is the intersection between medicinal plants and pharmacology. This international journal publishes manuscripts in the fields of medicinal plants, pharmacology and therapeutic. This journal aims to reach all relevant national and international medical institutions and persons in electronic version free of charge. J Herbmed Pharmacol has pursued this aim through publishing editorials, original research articles, reviews, mini-reviews, commentaries, letters to the editor, hypothesis, case reports, epidemiology and prevention, news and views. In this journal, particular emphasis is given to research, both experimental and clinical, aimed at protection/prevention of diseases. A further aim of this journal is to emphasize and strengthen the link between herbalists and pharmacologists. In addition, J Herbmed Pharmacol welcomes basic biomedical as well as pharmaceutical scientific research applied to clinical pharmacology. Contributions in any of these formats are invited for editorial consideration following peer review by at least two experts in the field.