Xiaoqiang Liu, Q. Ma, Xiaoyong Wu, T. Hu, G. Dai, Jin Wu, S. Tao, Shaopeng Wang, Lingli Liu, Q. Guo, Yanjun Su
{"title":"Nonscalability of Fractal Dimension to Quantify Canopy Structural Complexity from Individual Trees to Forest Stands","authors":"Xiaoqiang Liu, Q. Ma, Xiaoyong Wu, T. Hu, G. Dai, Jin Wu, S. Tao, Shaopeng Wang, Lingli Liu, Q. Guo, Yanjun Su","doi":"10.34133/remotesensing.0001","DOIUrl":null,"url":null,"abstract":"Canopy structural complexity is a critical emergent forest attribute, and light detection and ranging (lidar)-based fractal dimension has been recognized as its powerful measure at the individual tree level. However, the current lidar-based estimation method is highly sensitive to data characteristics, and its scalability from individual trees to forest stands remains unclear. This study proposed an improved method to estimate fractal dimension from lidar data by considering Shannon entropy, and evaluated its scalability from individual trees to forest stands through mathematical derivations. Moreover, a total of 280 forest stand scenes simulated from the terrestrial lidar data of 115 trees spanning large variability in canopy structural complexity were used to evaluate the robustness of the proposed method and the scalability of fractal dimension. The results show that the proposed method can significantly improve the robustness of lidar-derived fractal dimensions. Both mathematical derivations and experimental analyses demonstrate that the fractal dimension of a forest stand is equal to that of the tree with the largest fractal dimension in it, manifesting its nonscalability from individual trees to forest stands. The nonscalability of fractal dimension reveals its limited capability in canopy structural complexity quantification and indicates that the power-law scaling theory of a forest stand underlying fractal geometry is determined by its dominant tree instead of the entire community. Nevertheless, we believe that fractal dimension is still a useful indicator of canopy structural complexity at the individual tree level and might be used along with other stand-level indexes to reflect the “tree-to-stand” correlation of canopy structural complexity.","PeriodicalId":38304,"journal":{"name":"遥感学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"遥感学报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.34133/remotesensing.0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Canopy structural complexity is a critical emergent forest attribute, and light detection and ranging (lidar)-based fractal dimension has been recognized as its powerful measure at the individual tree level. However, the current lidar-based estimation method is highly sensitive to data characteristics, and its scalability from individual trees to forest stands remains unclear. This study proposed an improved method to estimate fractal dimension from lidar data by considering Shannon entropy, and evaluated its scalability from individual trees to forest stands through mathematical derivations. Moreover, a total of 280 forest stand scenes simulated from the terrestrial lidar data of 115 trees spanning large variability in canopy structural complexity were used to evaluate the robustness of the proposed method and the scalability of fractal dimension. The results show that the proposed method can significantly improve the robustness of lidar-derived fractal dimensions. Both mathematical derivations and experimental analyses demonstrate that the fractal dimension of a forest stand is equal to that of the tree with the largest fractal dimension in it, manifesting its nonscalability from individual trees to forest stands. The nonscalability of fractal dimension reveals its limited capability in canopy structural complexity quantification and indicates that the power-law scaling theory of a forest stand underlying fractal geometry is determined by its dominant tree instead of the entire community. Nevertheless, we believe that fractal dimension is still a useful indicator of canopy structural complexity at the individual tree level and might be used along with other stand-level indexes to reflect the “tree-to-stand” correlation of canopy structural complexity.
遥感学报Social Sciences-Geography, Planning and Development
CiteScore
3.60
自引率
0.00%
发文量
3200
期刊介绍:
The predecessor of Journal of Remote Sensing is Remote Sensing of Environment, which was founded in 1986. It was born in the beginning of China's remote sensing career and is the first remote sensing journal that has grown up with the development of China's remote sensing career. Since its inception, the Journal of Remote Sensing has published a large number of the latest scientific research results in China and the results of nationally-supported research projects in the light of the priorities and needs of China's remote sensing endeavours at different times, playing a great role in the development of remote sensing science and technology and the cultivation of talents in China, and becoming the most influential academic journal in the field of remote sensing and geographic information science in China.
As the only national comprehensive academic journal in the field of remote sensing in China, Journal of Remote Sensing is dedicated to reporting the research reports, stage-by-stage research briefs and high-level reviews in the field of remote sensing and its related disciplines with international and domestic advanced level. It focuses on new concepts, results and progress in this field. It covers the basic theories of remote sensing, the development of remote sensing technology and the application of remote sensing in the fields of agriculture, forestry, hydrology, geology, mining, oceanography, mapping and other resource and environmental fields as well as in disaster monitoring, research on geographic information systems (GIS), and the integration of remote sensing with GIS and the Global Navigation Satellite System (GNSS) and its applications.