Defining relations for quantum symmetric pair coideals of Kac–Moody type

IF 0.6 2区 数学 Q3 MATHEMATICS
Hadewijch De Clercq
{"title":"Defining relations for quantum symmetric pair coideals of Kac–Moody type","authors":"Hadewijch De Clercq","doi":"10.4171/JCA/57","DOIUrl":null,"url":null,"abstract":"Classical symmetric pairs consist of a symmetrizable Kac-Moody algebra $\\mathfrak{g}$, together with its subalgebra of fixed points under an involutive automorphism of the second kind. Quantum group analogs of this construction, known as quantum symmetric pairs, replace the fixed point Lie subalgebras by one-sided coideal subalgebras of the quantized enveloping algebra $U_q(\\mathfrak{g})$. We provide a complete presentation by generators and relations for these quantum symmetric pair coideal subalgebras. These relations are of inhomogeneous $q$-Serre type and are valid without restrictions on the generalized Cartan matrix. We draw special attention to the split case, where the quantum symmetric pair coideal subalgebras are generalized $q$-Onsager algebras.","PeriodicalId":48483,"journal":{"name":"Journal of Combinatorial Algebra","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2019-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JCA/57","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

Classical symmetric pairs consist of a symmetrizable Kac-Moody algebra $\mathfrak{g}$, together with its subalgebra of fixed points under an involutive automorphism of the second kind. Quantum group analogs of this construction, known as quantum symmetric pairs, replace the fixed point Lie subalgebras by one-sided coideal subalgebras of the quantized enveloping algebra $U_q(\mathfrak{g})$. We provide a complete presentation by generators and relations for these quantum symmetric pair coideal subalgebras. These relations are of inhomogeneous $q$-Serre type and are valid without restrictions on the generalized Cartan matrix. We draw special attention to the split case, where the quantum symmetric pair coideal subalgebras are generalized $q$-Onsager algebras.
定义Kac-Moody型量子对称对共理想的关系
经典对称对由可对称的Kac-Moody代数$\mathfrak{g}$及其在第二类对合自同构下的不动点子代数组成。这种构造的量子群类似物,称为量子对称对,用量子化包络代数$U_q(\mathfrak{g})$的单侧协配子代数代替不动点李子代数。我们提供了这些量子对称对共量子子代数的生成器和关系的完整表示。这些关系是非齐次$q$-Serre型的,在不受广义Cartan矩阵限制的情况下是有效的。我们特别注意分裂的情况,其中量子对称对共轭子代数是广义$q$-Onsager代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信