Implicit-Explicit Finite Difference Approximations of a Semilinear Heat Equation with Logarithmic Nonlinearity

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Panagiotis Paraschis, G. E. Zouraris
{"title":"Implicit-Explicit Finite Difference Approximations of a Semilinear Heat Equation with Logarithmic Nonlinearity","authors":"Panagiotis Paraschis, G. E. Zouraris","doi":"10.1515/cmam-2022-0217","DOIUrl":null,"url":null,"abstract":"Abstract We formulate an initial and Dirichlet boundary value problem for a semilinear heat equation with logarithmic nonlinearity over a two-dimensional rectangular domain. We approximate its solution by employing the standard second-order finite difference method for space discretization, and a linearized backward Euler method, or, a linearized BDF2 method for time stepping. For the linearized backward Euler finite difference method, we derive an almost optimal order error estimate in the discrete L t ∞ ⁢ ( L x ∞ ) L^{\\infty}_{t}(L^{\\infty}_{x}) -norm without imposing mesh conditions, and for the linearized BDF2 finite difference method, we establish an almost optimal order error estimate in the discrete L t ∞ ⁢ ( H x 1 ) L^{\\infty}_{t}(H^{1}_{x}) -norm, allowing a mild mesh condition to be satisfied. Finally, we show the efficiency of the numerical methods proposed, by exposing results from numerical experiments. It is the first time in the literature where numerical methods for the approximation of the solution to the heat equation with logarithmic nonlinearity are applied and analysed.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/cmam-2022-0217","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We formulate an initial and Dirichlet boundary value problem for a semilinear heat equation with logarithmic nonlinearity over a two-dimensional rectangular domain. We approximate its solution by employing the standard second-order finite difference method for space discretization, and a linearized backward Euler method, or, a linearized BDF2 method for time stepping. For the linearized backward Euler finite difference method, we derive an almost optimal order error estimate in the discrete L t ∞ ⁢ ( L x ∞ ) L^{\infty}_{t}(L^{\infty}_{x}) -norm without imposing mesh conditions, and for the linearized BDF2 finite difference method, we establish an almost optimal order error estimate in the discrete L t ∞ ⁢ ( H x 1 ) L^{\infty}_{t}(H^{1}_{x}) -norm, allowing a mild mesh condition to be satisfied. Finally, we show the efficiency of the numerical methods proposed, by exposing results from numerical experiments. It is the first time in the literature where numerical methods for the approximation of the solution to the heat equation with logarithmic nonlinearity are applied and analysed.
具有对数非线性的半线性热方程的隐显有限差分逼近
摘要我们在二维矩形域上建立了一个具有对数非线性的双线性热方程的初边值和Dirichlet边值问题。我们通过使用标准的二阶有限差分方法进行空间离散化,并使用线性化的后向Euler方法或线性化的BDF2方法进行时间步进来近似其解。对于线性化后向Euler有限差分法,我们在不施加网格条件的情况下,在离散Lt∞(Lx∞)L^{\infty}_{t}^{1}_{x} )-范数,允许满足温和的网格条件。最后,通过数值实验的结果,我们展示了所提出的数值方法的有效性。这是文献中首次应用和分析具有对数非线性的热方程解的近似数值方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
54
期刊介绍: The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs. CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics. The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信