Counterexamples to a divergence lower bound for the covariant derivative of skew-symmetric 2-tensor fields

Pub Date : 2023-03-21 DOI:10.1007/s10455-023-09896-y
Stefano Borghini, Lorenzo Mazzieri
{"title":"Counterexamples to a divergence lower bound for the covariant derivative of skew-symmetric 2-tensor fields","authors":"Stefano Borghini,&nbsp;Lorenzo Mazzieri","doi":"10.1007/s10455-023-09896-y","DOIUrl":null,"url":null,"abstract":"<div><p>In Hwang and Yun (Ann Glob Anal Geom 62(3):507–532, 2022), an estimate for skew-symmetric 2-tensors was claimed. Soon after, this estimate has been exploited to claim powerful classification results: Most notably, it has been employed to propose a proof of a Black Hole Uniqueness Theorem for vacuum static spacetimes with positive scalar curvature (Xu and Ye in Invent Math 33(2):64, 2022) and in connection with the Besse conjecture (Yun and Hwang in Critical point equation on three-dimensional manifolds and the Besse conjecture). In the present note, we point out an issue in the argument proposed in Hwang and Yun (Ann Glob Anal Geom 62(3):507–532, 2022) and we provide a counterexample to the estimate.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09896-y.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09896-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In Hwang and Yun (Ann Glob Anal Geom 62(3):507–532, 2022), an estimate for skew-symmetric 2-tensors was claimed. Soon after, this estimate has been exploited to claim powerful classification results: Most notably, it has been employed to propose a proof of a Black Hole Uniqueness Theorem for vacuum static spacetimes with positive scalar curvature (Xu and Ye in Invent Math 33(2):64, 2022) and in connection with the Besse conjecture (Yun and Hwang in Critical point equation on three-dimensional manifolds and the Besse conjecture). In the present note, we point out an issue in the argument proposed in Hwang and Yun (Ann Glob Anal Geom 62(3):507–532, 2022) and we provide a counterexample to the estimate.

分享
查看原文
偏对称2张量场协变导数散度下界的反例
在Hwang和Yun(Ann Glob Anal Geom 62(3):507–5322022)中,提出了对斜对称2-张量的估计。不久之后,这一估计被用来声称有强大的分类结果:最值得注意的是,它被用来提出具有正标量曲率的真空静态时空的黑洞唯一性定理的证明(Xu和Ye在Invent Math 33(2):64,2022),并与贝塞尔猜想(Yun和Hwang在三维流形上的临界点方程和贝塞尔猜想中)有关。在本说明中,我们指出了Hwang和Yun(Ann Glob Anal Geom 62(3):507–5322022)中提出的论点中的一个问题,并为该估计提供了一个反例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信