D. Maggioni, P. Schuchert, R. Arrigoni, B. Hoeksema, Danwei Huang, G. Strona, D. Seveso, M. Berumen, Enrico Montalbetti, Richard Collins, P. Galli, S. Montano
{"title":"Integrative systematics illuminates the relationships in two sponge-associated hydrozoan families (Capitata: Sphaerocorynidae and Zancleopsidae)","authors":"D. Maggioni, P. Schuchert, R. Arrigoni, B. Hoeksema, Danwei Huang, G. Strona, D. Seveso, M. Berumen, Enrico Montalbetti, Richard Collins, P. Galli, S. Montano","doi":"10.1163/18759866-bja10023","DOIUrl":null,"url":null,"abstract":"\nAn integrated approach using morphological and genetic data is needed to disentangle taxonomic uncertainties affecting the hydrozoan families Sphaerocorynidae and Zancleopsidae. Here we used this approach to accurately characterise species in these families, identify the previously unknown polyp stages of the genera Euphysilla and Zancleopsis, which were originally described exclusively based on the medusa stages, describe a new sphaerocorynid genus and species, and assess the phylogenetic position of the two families within the Capitata. The monotypic genus Astrocoryne was found to be a synonym of Zancleopsis. Astrocoryne cabela was therefore transferred to the genus Zancleopsis as Zancleopsis cabela comb. nov. The new polyp-based genus and species Kudacoryne diaphana gen. nov. sp. nov. was erected within the Sphaerocorynidae. Both taxa are primarily based on genetic data, but the introduction of this new genus was made necessary by the fact that it clustered with the genera Heterocoryne and Euphysilla, despite showing Sphaerocoryne-like polyps. Interestingly, the species analysed in this work showed contrasting biogeographical patterns. Based on our data and literature records, some species appear to have a wide circumtropical range, whereas others are limited to few localities. Overall, these results lay the ground for future investigations aimed at resolving the taxonomy and systematics of these two enigmatic families.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1163/18759866-bja10023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 4
Abstract
An integrated approach using morphological and genetic data is needed to disentangle taxonomic uncertainties affecting the hydrozoan families Sphaerocorynidae and Zancleopsidae. Here we used this approach to accurately characterise species in these families, identify the previously unknown polyp stages of the genera Euphysilla and Zancleopsis, which were originally described exclusively based on the medusa stages, describe a new sphaerocorynid genus and species, and assess the phylogenetic position of the two families within the Capitata. The monotypic genus Astrocoryne was found to be a synonym of Zancleopsis. Astrocoryne cabela was therefore transferred to the genus Zancleopsis as Zancleopsis cabela comb. nov. The new polyp-based genus and species Kudacoryne diaphana gen. nov. sp. nov. was erected within the Sphaerocorynidae. Both taxa are primarily based on genetic data, but the introduction of this new genus was made necessary by the fact that it clustered with the genera Heterocoryne and Euphysilla, despite showing Sphaerocoryne-like polyps. Interestingly, the species analysed in this work showed contrasting biogeographical patterns. Based on our data and literature records, some species appear to have a wide circumtropical range, whereas others are limited to few localities. Overall, these results lay the ground for future investigations aimed at resolving the taxonomy and systematics of these two enigmatic families.