A Parallel Algorithm for Generalized Multiple-set Split Feasibility with Application to Optimal Control Problems

Pub Date : 2022-01-01 DOI:10.11650/tjm/220502
N. T. Thuy, N. T. Nghia
{"title":"A Parallel Algorithm for Generalized Multiple-set Split Feasibility with Application to Optimal Control Problems","authors":"N. T. Thuy, N. T. Nghia","doi":"10.11650/tjm/220502","DOIUrl":null,"url":null,"abstract":". In this paper, we concentrate on the generalized multiple-set split feasibility problems in Hilbert spaces and propose a new iterative method for this problem. One of the most important of this method is using dynamic step-sizes, in which the information of the previous step is the only requirement to compute the next approximation. The strong convergence result of the suggested algorithm is proven theoretically under some feasible assumptions. When considering the main results in some special cases, we also obtain some applications regarding the solution of the multiple-set split feasibility problem, the split feasibility problem with multiple output sets, and the split feasibility problem as well as the linear optimal control problem. Some numerical experiments on infinite-dimensional spaces and applications in optimal control problems are conducted to demonstrate the advantages and computational efficiency of the proposed algorithms over some existing results.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11650/tjm/220502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. In this paper, we concentrate on the generalized multiple-set split feasibility problems in Hilbert spaces and propose a new iterative method for this problem. One of the most important of this method is using dynamic step-sizes, in which the information of the previous step is the only requirement to compute the next approximation. The strong convergence result of the suggested algorithm is proven theoretically under some feasible assumptions. When considering the main results in some special cases, we also obtain some applications regarding the solution of the multiple-set split feasibility problem, the split feasibility problem with multiple output sets, and the split feasibility problem as well as the linear optimal control problem. Some numerical experiments on infinite-dimensional spaces and applications in optimal control problems are conducted to demonstrate the advantages and computational efficiency of the proposed algorithms over some existing results.
分享
查看原文
广义多集分割可行性并行算法及其在最优控制问题中的应用
在本文中,我们集中讨论Hilbert空间中的广义多集分裂可行性问题,并提出了一种新的迭代方法。这种方法中最重要的一个是使用动态步长,其中前一步的信息是计算下一个近似值的唯一要求。在一些可行的假设下,从理论上证明了该算法的强收敛性。在考虑一些特殊情况下的主要结果时,我们还获得了关于多集分裂可行性问题、具有多个输出集的分裂可行性问题以及分裂可行性问题和线性最优控制问题的解的一些应用。在有限维空间上进行了一些数值实验,并在最优控制问题中进行了应用,以证明所提出的算法相对于一些现有结果的优势和计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信