W. Gosling, S. Y. Maezumi, Britte M. Heijink, M. N. Nascimento, M. Raczka, Masha T. van der Sande, M. Bush, C. McMichael
{"title":"Scarce fire activity in north and north-western Amazonian forests during the last 10,000 years","authors":"W. Gosling, S. Y. Maezumi, Britte M. Heijink, M. N. Nascimento, M. Raczka, Masha T. van der Sande, M. Bush, C. McMichael","doi":"10.1080/17550874.2021.2008040","DOIUrl":null,"url":null,"abstract":"ABSTRACT Background Fire is known to affect forest biodiversity, carbon storage, and public health today; however, comparable fire histories from across forest regions in Amazonia are lacking. Consequently, the degree to which past fires could have preconditioned modern forest resilience to fire remains unknown. Aim We characterised the long-term (multi-millennial) fire history of forests in Amazonia to determine spatial and temporal differences in fire regimes. Methods We collated and standardised all available charcoal data extracted from continuously deposited lake sediments (n = 31) to reconstruct a ca. 10,000-year fire history for: (i) north and north-western, (ii) south-western, and (iii) eastern parts of Amazonia. Results Charcoal was found across Amazonia, but it was less abundant in the north and north-western regions. Regionally distinct periods of elevated charcoal deposition were identified at between ca. 4000 and 1500 (eastern), 3000–1000 (south-western) and 2500–2000 (north and north-western) years ago. Conclusions Forests in eastern and south-western Amazonia have been exposed to fire activity over recent millennia, while the forests in north and north-western Amazonia have grown under conditions largely free of fire activity. Consequently, we hypothesise that the forests in eastern and south-western Amazonia are preconditioned to be relatively more resilient to the threat of increased modern fire activity.","PeriodicalId":49691,"journal":{"name":"Plant Ecology & Diversity","volume":"14 1","pages":"143 - 156"},"PeriodicalIF":1.7000,"publicationDate":"2021-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Ecology & Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17550874.2021.2008040","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 13
Abstract
ABSTRACT Background Fire is known to affect forest biodiversity, carbon storage, and public health today; however, comparable fire histories from across forest regions in Amazonia are lacking. Consequently, the degree to which past fires could have preconditioned modern forest resilience to fire remains unknown. Aim We characterised the long-term (multi-millennial) fire history of forests in Amazonia to determine spatial and temporal differences in fire regimes. Methods We collated and standardised all available charcoal data extracted from continuously deposited lake sediments (n = 31) to reconstruct a ca. 10,000-year fire history for: (i) north and north-western, (ii) south-western, and (iii) eastern parts of Amazonia. Results Charcoal was found across Amazonia, but it was less abundant in the north and north-western regions. Regionally distinct periods of elevated charcoal deposition were identified at between ca. 4000 and 1500 (eastern), 3000–1000 (south-western) and 2500–2000 (north and north-western) years ago. Conclusions Forests in eastern and south-western Amazonia have been exposed to fire activity over recent millennia, while the forests in north and north-western Amazonia have grown under conditions largely free of fire activity. Consequently, we hypothesise that the forests in eastern and south-western Amazonia are preconditioned to be relatively more resilient to the threat of increased modern fire activity.
期刊介绍:
Plant Ecology and Diversity is an international journal for communicating results and novel ideas in plant science, in print and on-line, six times a year. All areas of plant biology relating to ecology, evolution and diversity are of interest, including those which explicitly deal with today''s highly topical themes, such as biodiversity, conservation and global change. We consider submissions that address fundamental questions which are pertinent to contemporary plant science. Articles concerning extreme environments world-wide are particularly welcome.
Plant Ecology and Diversity considers for publication original research articles, short communications, reviews, and scientific correspondence that explore thought-provoking ideas.
To aid redressing ‘publication bias’ the journal is unique in reporting, in the form of short communications, ‘negative results’ and ‘repeat experiments’ that test ecological theories experimentally, in theoretically flawless and methodologically sound papers. Research reviews and method papers, are also encouraged.
Plant Ecology & Diversity publishes high-quality and topical research that demonstrates solid scholarship. As such, the journal does not publish purely descriptive papers. Submissions are required to focus on research topics that are broad in their scope and thus provide new insights and contribute to theory. The original research should address clear hypotheses that test theory or questions and offer new insights on topics of interest to an international readership.