{"title":"A new elliptic mixed boundary value problem with (p,q)-Laplacian and Clarke subdifferential: Existence, comparison and convergence results","authors":"Shengda Zeng, S. Migórski, D. Tarzia","doi":"10.1142/s0219530521500287","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to investigate a new class of elliptic mixed boundary value problems involving a nonlinear and nonhomogeneous partial differential operator [Formula: see text]-Laplacian, and a multivalued term represented by Clarke’s generalized gradient. First, we apply a surjectivity result for multivalued pseudomonotone operators to examine the existence of weak solutions under mild hypotheses. Then, a comparison theorem is delivered, and a convergence result, which reveals the asymptotic behavior of solution when the parameter (heat transfer coefficient) tends to infinity, is obtained. Finally, we establish a continuous dependence result of solution to the boundary value problem on the data.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530521500287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2
Abstract
The goal of this paper is to investigate a new class of elliptic mixed boundary value problems involving a nonlinear and nonhomogeneous partial differential operator [Formula: see text]-Laplacian, and a multivalued term represented by Clarke’s generalized gradient. First, we apply a surjectivity result for multivalued pseudomonotone operators to examine the existence of weak solutions under mild hypotheses. Then, a comparison theorem is delivered, and a convergence result, which reveals the asymptotic behavior of solution when the parameter (heat transfer coefficient) tends to infinity, is obtained. Finally, we establish a continuous dependence result of solution to the boundary value problem on the data.