Optimizing inventory control through a data-driven and model-independent framework

IF 2.1 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Evangelos Theodorou, Evangelos Spiliotis, Vassilios Assimakopoulos
{"title":"Optimizing inventory control through a data-driven and model-independent framework","authors":"Evangelos Theodorou,&nbsp;Evangelos Spiliotis,&nbsp;Vassilios Assimakopoulos","doi":"10.1016/j.ejtl.2022.100103","DOIUrl":null,"url":null,"abstract":"<div><p>Machine learning has shown great potential in various domains, but its appearance in inventory control optimization settings remains rather limited. We propose a novel inventory cost minimization framework that exploits advanced decision-tree based models to approximate inventory performance at an item level, considering demand patterns and key replenishment policy parameters as input. The suggested approach enables data-driven approximations that are faster to perform compared to standard inventory simulations, while being flexible in terms of the methods used for forecasting demand or estimating inventory level, lost sales, and number of orders, among others. Moreover, such approximations can be based on knowledge extracted from different sets of items than the ones being optimized, thus providing more accurate proposals in cases where historical data are scarce or highly affected by stock-outs. The framework was evaluated using part of the M5 competition’s data. Our results suggest that the proposed framework, and especially its transfer learning variant, can result in significant improvements, both in terms of total inventory cost and realized service level.</p></div>","PeriodicalId":45871,"journal":{"name":"EURO Journal on Transportation and Logistics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Transportation and Logistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192437622000280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 4

Abstract

Machine learning has shown great potential in various domains, but its appearance in inventory control optimization settings remains rather limited. We propose a novel inventory cost minimization framework that exploits advanced decision-tree based models to approximate inventory performance at an item level, considering demand patterns and key replenishment policy parameters as input. The suggested approach enables data-driven approximations that are faster to perform compared to standard inventory simulations, while being flexible in terms of the methods used for forecasting demand or estimating inventory level, lost sales, and number of orders, among others. Moreover, such approximations can be based on knowledge extracted from different sets of items than the ones being optimized, thus providing more accurate proposals in cases where historical data are scarce or highly affected by stock-outs. The framework was evaluated using part of the M5 competition’s data. Our results suggest that the proposed framework, and especially its transfer learning variant, can result in significant improvements, both in terms of total inventory cost and realized service level.

通过数据驱动和模型独立的框架优化库存控制
机器学习在各个领域都显示出巨大的潜力,但它在库存控制优化设置中的出现仍然相当有限。我们提出了一种新的库存成本最小化框架,该框架利用基于高级决策树的模型,在考虑需求模式和关键补充政策参数作为输入的情况下,在项目层面近似库存绩效。建议的方法支持数据驱动的近似,与标准库存模拟相比,执行速度更快,同时在用于预测需求或估计库存水平、销售损失和订单数量等的方法方面具有灵活性。此外,这种近似可以基于从不同的项目集中提取的知识,而不是正在优化的知识,因此在历史数据稀缺或受缺货严重影响的情况下提供更准确的建议。该框架使用M5竞赛的部分数据进行了评估。我们的研究结果表明,所提出的框架,特别是它的迁移学习变体,可以在总库存成本和实现的服务水平方面产生显著的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
24
审稿时长
129 days
期刊介绍: The EURO Journal on Transportation and Logistics promotes the use of mathematics in general, and operations research in particular, in the context of transportation and logistics. It is a forum for the presentation of original mathematical models, methodologies and computational results, focussing on advanced applications in transportation and logistics. The journal publishes two types of document: (i) research articles and (ii) tutorials. A research article presents original methodological contributions to the field (e.g. new mathematical models, new algorithms, new simulation techniques). A tutorial provides an introduction to an advanced topic, designed to ease the use of the relevant methodology by researchers and practitioners.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信