{"title":"Covering the Edges of a Random Hypergraph by Cliques","authors":"V. Rödl, A. Rucinski","doi":"10.7151/dmgt.2431","DOIUrl":null,"url":null,"abstract":"Abstract We determine the order of magnitude of the minimum clique cover of the edges of a binomial, r-uniform, random hypergraph G(r)(n, p), p fixed. In doing so, we combine the ideas from the proofs of the graph case (r = 2) in Frieze and Reed [Covering the edges of a random graph by cliques, Combinatorica 15 (1995) 489–497] and Guo, Patten, Warnke [Prague dimension of random graphs, manuscript submitted for publication].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We determine the order of magnitude of the minimum clique cover of the edges of a binomial, r-uniform, random hypergraph G(r)(n, p), p fixed. In doing so, we combine the ideas from the proofs of the graph case (r = 2) in Frieze and Reed [Covering the edges of a random graph by cliques, Combinatorica 15 (1995) 489–497] and Guo, Patten, Warnke [Prague dimension of random graphs, manuscript submitted for publication].