{"title":"Covering the Edges of a Random Hypergraph by Cliques","authors":"V. Rödl, A. Rucinski","doi":"10.7151/dmgt.2431","DOIUrl":null,"url":null,"abstract":"Abstract We determine the order of magnitude of the minimum clique cover of the edges of a binomial, r-uniform, random hypergraph G(r)(n, p), p fixed. In doing so, we combine the ideas from the proofs of the graph case (r = 2) in Frieze and Reed [Covering the edges of a random graph by cliques, Combinatorica 15 (1995) 489–497] and Guo, Patten, Warnke [Prague dimension of random graphs, manuscript submitted for publication].","PeriodicalId":48875,"journal":{"name":"Discussiones Mathematicae Graph Theory","volume":"42 1","pages":"1333 - 1349"},"PeriodicalIF":0.5000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2431","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We determine the order of magnitude of the minimum clique cover of the edges of a binomial, r-uniform, random hypergraph G(r)(n, p), p fixed. In doing so, we combine the ideas from the proofs of the graph case (r = 2) in Frieze and Reed [Covering the edges of a random graph by cliques, Combinatorica 15 (1995) 489–497] and Guo, Patten, Warnke [Prague dimension of random graphs, manuscript submitted for publication].
期刊介绍:
The Discussiones Mathematicae Graph Theory publishes high-quality refereed original papers. Occasionally, very authoritative expository survey articles and notes of exceptional value can be published. The journal is mainly devoted to the following topics in Graph Theory: colourings, partitions (general colourings), hereditary properties, independence and domination, structures in graphs (sets, paths, cycles, etc.), local properties, products of graphs as well as graph algorithms related to these topics.