Existence of normalized solutions for the coupled elliptic system with quadratic nonlinearity

IF 2.1 2区 数学 Q1 MATHEMATICS
Jun Wang, Xuan Wang, Song Wei
{"title":"Existence of normalized solutions for the coupled elliptic system with quadratic nonlinearity","authors":"Jun Wang, Xuan Wang, Song Wei","doi":"10.1515/ans-2022-0010","DOIUrl":null,"url":null,"abstract":"Abstract In the present paper, we study the existence of the normalized solutions for the following coupled elliptic system with quadratic nonlinearity − Δ u − λ 1 u = μ 1 ∣ u ∣ u + β u v in R N , − Δ v − λ 2 v = μ 2 ∣ v ∣ v + β 2 u 2 in R N , \\left\\{\\begin{array}{ll}-\\Delta u-{\\lambda }_{1}u={\\mu }_{1}| u| u+\\beta uv\\hspace{1.0em}& \\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}{{\\mathbb{R}}}^{N},\\\\ -\\Delta v-{\\lambda }_{2}v={\\mu }_{2}| v| v+\\frac{\\beta }{2}{u}^{2}\\hspace{1.0em}& \\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}{{\\mathbb{R}}}^{N},\\end{array}\\right. where u , v u,v satisfying the additional condition ∫ R N u 2 d x = a 1 , ∫ R N v 2 d x = a 2 . \\mathop{\\int }\\limits_{{{\\mathbb{R}}}^{N}}{u}^{2}{\\rm{d}}x={a}_{1},\\hspace{1em}\\mathop{\\int }\\limits_{{{\\mathbb{R}}}^{N}}{v}^{2}{\\rm{d}}x={a}_{2}. On the one hand, we prove the existence of minimizer for the system with L 2 {L}^{2} -subcritical growth ( N ≤ 3 N\\le 3 ). On the other hand, we prove the existence results for different ranges of the coupling parameter β > 0 \\beta \\gt 0 with L 2 {L}^{2} -supercritical growth ( N = 5 N=5 ). Our argument is based on the rearrangement techniques and the minimax construction.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"22 1","pages":"203 - 227"},"PeriodicalIF":2.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2022-0010","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract In the present paper, we study the existence of the normalized solutions for the following coupled elliptic system with quadratic nonlinearity − Δ u − λ 1 u = μ 1 ∣ u ∣ u + β u v in R N , − Δ v − λ 2 v = μ 2 ∣ v ∣ v + β 2 u 2 in R N , \left\{\begin{array}{ll}-\Delta u-{\lambda }_{1}u={\mu }_{1}| u| u+\beta uv\hspace{1.0em}& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N},\\ -\Delta v-{\lambda }_{2}v={\mu }_{2}| v| v+\frac{\beta }{2}{u}^{2}\hspace{1.0em}& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N},\end{array}\right. where u , v u,v satisfying the additional condition ∫ R N u 2 d x = a 1 , ∫ R N v 2 d x = a 2 . \mathop{\int }\limits_{{{\mathbb{R}}}^{N}}{u}^{2}{\rm{d}}x={a}_{1},\hspace{1em}\mathop{\int }\limits_{{{\mathbb{R}}}^{N}}{v}^{2}{\rm{d}}x={a}_{2}. On the one hand, we prove the existence of minimizer for the system with L 2 {L}^{2} -subcritical growth ( N ≤ 3 N\le 3 ). On the other hand, we prove the existence results for different ranges of the coupling parameter β > 0 \beta \gt 0 with L 2 {L}^{2} -supercritical growth ( N = 5 N=5 ). Our argument is based on the rearrangement techniques and the minimax construction.
二次非线性耦合椭圆系统归一化解的存在性
摘要在本文中,我们研究了以下具有二次非线性的耦合椭圆系统的归一化解的存在性——R N中的−Δu−λ1 u=μ1ÜuÜu+βu v,R N中−Δv−λ2 v=μ2ÜvÜv+β2 u 2,\ left \{\ begin{array}{ll}-\增量u{\lambda}_{1}u={\mu}_{1}|u|u+\beta-uv\hspace{1.0em}&\hspace{0.1em}\text{in}\space{0.1em}\hspace}0.33em}{\mathbb{R}}^{N},\\-\Delta v-{\lambda}_{2}v={\mu}_{2}|v|v+\frac{\beta}{2}{u}^{2}\space{1.0em}&\space{{0.1em}\text{in}\space{0.1em}\ hspace{0.33em}{\mathbb{R}}^{N},\end{array}\right。式中u,vu,v满足附加条件:。\mathop{\int}\limits_{{\mathbb{R}}}^{N}}{u}^{2}{\rm{d}x={a}_{1} ,\space{1em}\mathop{\int}\limits_{{\mathbb{R}}}^{N}}{v}^{2}{\rm{d}x={a}_{2} 。一方面,我们证明了具有L2{L}^{2}-次临界增长(N≤3N\le3)系统的极小值的存在性。另一方面,我们证明了在L2{L}^{2}-超临界生长(N=5 N=5)的不同范围内,耦合参数β>0β>0的存在性结果。我们的论点是基于重排技术和极小极大构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信