Analisis Sentimen Pengguna Marketplace Bukalapak dan Tokopedia di Twitter Menggunakan Machine Learning

I. Saputra, Rahmad Singgih AJI PAMBUDI, Hanafi Eko Darono, Fachri Amsury, Muhammad Rizki Fahdia, Benni Ramadhan, Anggi Ardiansyah
{"title":"Analisis Sentimen Pengguna Marketplace Bukalapak dan Tokopedia di Twitter Menggunakan Machine Learning","authors":"I. Saputra, Rahmad Singgih AJI PAMBUDI, Hanafi Eko Darono, Fachri Amsury, Muhammad Rizki Fahdia, Benni Ramadhan, Anggi Ardiansyah","doi":"10.30998/faktorexacta.v13i4.7074","DOIUrl":null,"url":null,"abstract":"Received Sep 9, 2019 Revised May 20, 2020 Accepted December 27, 2020 A collection of tweets from Twitter users about Marketplace Bukalapak and Tokopedia can be used as a sentiment analysis. The data obtained is processed using data mining techniques, in which there is a process of mining the text, tokenize, transformation, classification, stem, etc. Then calculated into three different algorithms to be compared, the algorithm used is the Decision Tree, K-NN, and Naïve Bayes Classifier with the aim of finding the best accuracy. Rapidminer application is also used to facilitate writers in processing data. The highest results from this study are Decision Tree algorithm with 82% accuracy, 81.95% precision and 86% recall.","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faktor Exacta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30998/faktorexacta.v13i4.7074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Received Sep 9, 2019 Revised May 20, 2020 Accepted December 27, 2020 A collection of tweets from Twitter users about Marketplace Bukalapak and Tokopedia can be used as a sentiment analysis. The data obtained is processed using data mining techniques, in which there is a process of mining the text, tokenize, transformation, classification, stem, etc. Then calculated into three different algorithms to be compared, the algorithm used is the Decision Tree, K-NN, and Naïve Bayes Classifier with the aim of finding the best accuracy. Rapidminer application is also used to facilitate writers in processing data. The highest results from this study are Decision Tree algorithm with 82% accuracy, 81.95% precision and 86% recall.
基于机器学习的情绪分析开放包市场用户和推特上的Tokopedia
收到日期:2019年9月9日修订日期:2020年5月20日接受日期:2020月27日推特用户关于Marketplace Bukalapak和Tokopedia的推文集合可用于情绪分析。使用数据挖掘技术对获得的数据进行处理,其中包括文本挖掘、标记化、转换、分类、词干等过程。然后计算出三种不同的算法进行比较,所使用的算法是决策树、K-NN和朴素贝叶斯分类器,目的是找到最佳精度。Rapidminer应用程序还用于方便写入程序处理数据。本研究的最高结果是决策树算法,其准确率为82%,准确率为81.95%,召回率为86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信