Reducing subspaces for multiplication operators on the Dirichlet space through local inverses and Riemann surfaces

IF 0.5 Q3 MATHEMATICS
Caixing Gu, S. Luo, J. Xiao
{"title":"Reducing subspaces for multiplication operators on the Dirichlet space through local inverses and Riemann surfaces","authors":"Caixing Gu, S. Luo, J. Xiao","doi":"10.1515/coma-2017-0007","DOIUrl":null,"url":null,"abstract":"Abstract This paper gives a full characterization of the reducing subspaces for the multiplication operator Mϕ on the Dirichlet space with symbol of finite Blaschke product ϕ of order 5I 6I 7. The reducing subspaces of Mϕ on the Dirichlet space and Bergman space are related. Our strategy is to use local inverses and Riemann surfaces to study the reducing subspaces of Mϕ on the Bergman space. By this means, we determine the reducing subspaces of Mϕ on the Dirichlet space and answer some questions of Douglas-Putinar-Wang in [6].","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"4 1","pages":"119 - 84"},"PeriodicalIF":0.5000,"publicationDate":"2017-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/coma-2017-0007","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2017-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract This paper gives a full characterization of the reducing subspaces for the multiplication operator Mϕ on the Dirichlet space with symbol of finite Blaschke product ϕ of order 5I 6I 7. The reducing subspaces of Mϕ on the Dirichlet space and Bergman space are related. Our strategy is to use local inverses and Riemann surfaces to study the reducing subspaces of Mϕ on the Bergman space. By this means, we determine the reducing subspaces of Mϕ on the Dirichlet space and answer some questions of Douglas-Putinar-Wang in [6].
通过局部逆和Riemann曲面减少Dirichlet空间上乘法算子的子空间
摘要本文给出了Dirichlet空间上具有5I6I7阶有限Blaschke乘积的符号的乘法算子M。M在Dirichlet空间和Bergman空间上的约化子空间是相关的。我们的策略是使用局部逆和黎曼曲面来研究Bergman空间上M的归约子空间。通过这种方法,我们确定了M在Dirichlet空间上的约化子空间,并回答了Douglas Putinar Wang在[6]中的一些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Complex Manifolds
Complex Manifolds MATHEMATICS-
CiteScore
1.30
自引率
20.00%
发文量
14
审稿时长
25 weeks
期刊介绍: Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信