Point Cloud Registration via Heuristic Reward Reinforcement Learning

Pub Date : 2023-02-06 DOI:10.3390/stats6010016
Bingren Chen
{"title":"Point Cloud Registration via Heuristic Reward Reinforcement Learning","authors":"Bingren Chen","doi":"10.3390/stats6010016","DOIUrl":null,"url":null,"abstract":"This paper proposes a heuristic reward reinforcement learning framework for point cloud registration. As an essential step of many 3D computer vision tasks such as object recognition and 3D reconstruction, point cloud registration has been well studied in the existing literature. This paper contributes to the literature by addressing the limitations of embedding and reward functions in existing methods. An improved state-embedding module and a stochastic reward function are proposed. While the embedding module enriches the captured characteristics of states, the newly designed reward function follows a time-dependent searching strategy, which allows aggressive attempts at the beginning and tends to be conservative in the end. We assess our method based on two public datasets (ModelNet40 and ScanObjectNN) and real-world data. The results confirm the strength of the new method in reducing errors in object rotation and translation, leading to more precise point cloud registration.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats6010016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a heuristic reward reinforcement learning framework for point cloud registration. As an essential step of many 3D computer vision tasks such as object recognition and 3D reconstruction, point cloud registration has been well studied in the existing literature. This paper contributes to the literature by addressing the limitations of embedding and reward functions in existing methods. An improved state-embedding module and a stochastic reward function are proposed. While the embedding module enriches the captured characteristics of states, the newly designed reward function follows a time-dependent searching strategy, which allows aggressive attempts at the beginning and tends to be conservative in the end. We assess our method based on two public datasets (ModelNet40 and ScanObjectNN) and real-world data. The results confirm the strength of the new method in reducing errors in object rotation and translation, leading to more precise point cloud registration.
分享
查看原文
基于启发式奖励强化学习的点云配准
本文提出了一种用于点云注册的启发式奖励强化学习框架。作为许多三维计算机视觉任务(如物体识别和三维重建)的重要步骤,点云配准在现有文献中得到了很好的研究。本文通过解决现有方法中嵌入和奖励函数的局限性,对文献做出了贡献。提出了一种改进的状态嵌入模块和随机奖励函数。虽然嵌入模块丰富了捕捉到的状态特征,但新设计的奖励函数遵循一种与时间相关的搜索策略,该策略允许一开始就进行积极的尝试,而最终往往是保守的。我们基于两个公共数据集(ModelNet40和ScanObjectNN)和真实世界的数据来评估我们的方法。结果证实了新方法在减少物体旋转和平移误差方面的优势,从而实现了更精确的点云配准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信