{"title":"Personalized Thermal Comfort Model with Decision Tree","authors":"Yuze Jiang","doi":"10.4236/ica.2019.104012","DOIUrl":null,"url":null,"abstract":"Thermal comfort is the expression of people’s satisfaction with the indoor temperature and is related to people’s working efficiency and health. In this way, it is necessary to construct a suitable environment for the user. However, even if adaptive thermal comfort has been developing rapidly for the past decades, most of the models are still developed based on simple statistical analysis such as regression models, which may not capture the complex relations between thermal comfort and the indoor thermal environment as well as differences between individual characteristics. Hence, in order to improve the accuracy of the adaptive thermal comfort model, this paper proposes a decision-tree-based thermal comfort model developed with the subset of the RP884 dataset. Then, a comfort-based HVAC controller was developed with the thermal sensation prediction results with the trained model above. As a result, the proposed controller indeed improves occupant’s thermal comfort model.","PeriodicalId":62904,"journal":{"name":"智能控制与自动化(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能控制与自动化(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/ica.2019.104012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Thermal comfort is the expression of people’s satisfaction with the indoor temperature and is related to people’s working efficiency and health. In this way, it is necessary to construct a suitable environment for the user. However, even if adaptive thermal comfort has been developing rapidly for the past decades, most of the models are still developed based on simple statistical analysis such as regression models, which may not capture the complex relations between thermal comfort and the indoor thermal environment as well as differences between individual characteristics. Hence, in order to improve the accuracy of the adaptive thermal comfort model, this paper proposes a decision-tree-based thermal comfort model developed with the subset of the RP884 dataset. Then, a comfort-based HVAC controller was developed with the thermal sensation prediction results with the trained model above. As a result, the proposed controller indeed improves occupant’s thermal comfort model.