Pulsed Electric Fields as Pretreatment for Different Drying Methods in Chilean Abalone (Concholepas concholepas) Mollusk: Effects on Product Physical Properties and Drying Methods Sustainability
Mario Pérez-Won, Luis González-Cavieres, Anais Palma-Acevedo, Gipsy Tabilo-Munizaga, Erick Jara-Quijada, Roberto Lemus-Mondaca
{"title":"Pulsed Electric Fields as Pretreatment for Different Drying Methods in Chilean Abalone (Concholepas concholepas) Mollusk: Effects on Product Physical Properties and Drying Methods Sustainability","authors":"Mario Pérez-Won, Luis González-Cavieres, Anais Palma-Acevedo, Gipsy Tabilo-Munizaga, Erick Jara-Quijada, Roberto Lemus-Mondaca","doi":"10.1007/s11947-023-03102-4","DOIUrl":null,"url":null,"abstract":"<div><p>Some shellfish, such as Chilean abalone, require high-energy intake to achieve desired attributes for transport and consumption. Drying is the most feasible method for transporting this product. Drying efficiency, energy consumption, and dried product quality are essential in food drying. The objective of this study was to compare the use of pulsed electric field (PEF: 2.0 kV/cm − 15 μs wide pulses, 50 pulses, 1 Hz) as pretreatment in three drying methods, vacuum microwave drying (VMD); freeze drying (FD); and hot air drying (HAD), in Chilean abalone mollusk. Drying kinetics, quality, and energy consumption parameters were evaluated, and energy gas emissions were calculated. The VMD with PEF application showed better values than the other drying systems, obtaining drying times nearly 67% lower than FD with PEF pretreatment—and nearly 83% lower than FD without PEF. For quality parameters, FD + PEF shows a significantly lower value of 250 N for hardness, and a lower change of color value (Δ<i>E</i> = 12). In the case of HAD, the PEF application did not significantly influence its processing. Regarding energy parameters, VMD use significantly reduced energy consumption and all greenhouse gas emissions reported in this work, whether PEF was used or not. Consequently, VMD and PEF have emerged as promising technologies for improving drying processes, maintaining quality, and low gas emissions.</p></div>","PeriodicalId":562,"journal":{"name":"Food and Bioprocess Technology","volume":"16 12","pages":"2772 - 2788"},"PeriodicalIF":5.3000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Bioprocess Technology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11947-023-03102-4","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Some shellfish, such as Chilean abalone, require high-energy intake to achieve desired attributes for transport and consumption. Drying is the most feasible method for transporting this product. Drying efficiency, energy consumption, and dried product quality are essential in food drying. The objective of this study was to compare the use of pulsed electric field (PEF: 2.0 kV/cm − 15 μs wide pulses, 50 pulses, 1 Hz) as pretreatment in three drying methods, vacuum microwave drying (VMD); freeze drying (FD); and hot air drying (HAD), in Chilean abalone mollusk. Drying kinetics, quality, and energy consumption parameters were evaluated, and energy gas emissions were calculated. The VMD with PEF application showed better values than the other drying systems, obtaining drying times nearly 67% lower than FD with PEF pretreatment—and nearly 83% lower than FD without PEF. For quality parameters, FD + PEF shows a significantly lower value of 250 N for hardness, and a lower change of color value (ΔE = 12). In the case of HAD, the PEF application did not significantly influence its processing. Regarding energy parameters, VMD use significantly reduced energy consumption and all greenhouse gas emissions reported in this work, whether PEF was used or not. Consequently, VMD and PEF have emerged as promising technologies for improving drying processes, maintaining quality, and low gas emissions.
期刊介绍:
Food and Bioprocess Technology provides an effective and timely platform for cutting-edge high quality original papers in the engineering and science of all types of food processing technologies, from the original food supply source to the consumer’s dinner table. It aims to be a leading international journal for the multidisciplinary agri-food research community.
The journal focuses especially on experimental or theoretical research findings that have the potential for helping the agri-food industry to improve process efficiency, enhance product quality and, extend shelf-life of fresh and processed agri-food products. The editors present critical reviews on new perspectives to established processes, innovative and emerging technologies, and trends and future research in food and bioproducts processing. The journal also publishes short communications for rapidly disseminating preliminary results, letters to the Editor on recent developments and controversy, and book reviews.