{"title":"Friction properties and lubrication mechanism of self-lubricating composite solid lubricant on laser textured AISI 52100 surface in sliding contact","authors":"X. Hua, J. Puoza, Peiyun Zhang, Jianguo Sun","doi":"10.1504/IJSURFSE.2018.10016052","DOIUrl":null,"url":null,"abstract":"The frictional behaviour and lubrication mechanism of self-lubricating Gr-MoS2-PI-CNT composite were investigated experimentally, characterised by surface preparation method and texture density. The results indicate that the dimples filled with composite solid lubricant (sample TPL) exhibited the best lubrication mechanism with the lowest friction as compared to the smooth surface without lubrication (sample S), textured surface without lubrication (sample T), textured surface burnished with solid lubricant (sample TSL) and textured surface coated with solid lubricant block (sample TBL). The texture density of 41.7% exhibited good friction properties under both higher loads and speeds. The composite solid lubricant formed stable lubricant-peaks on each dimple the by 'slide extrusion accumulation' mechanism with a gradient phenomenon along the sliding direction which improved the self-lubricating effect of the lubricant. The energy dispersive X-ray spectroscopy (EDS) analysis indicates that the solid lubricant has been transferred from the micro-dimples to the space between dimples which improved lubrication.","PeriodicalId":14460,"journal":{"name":"International Journal of Surface Science and Engineering","volume":"12 1","pages":"228"},"PeriodicalIF":1.0000,"publicationDate":"2018-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Surface Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1504/IJSURFSE.2018.10016052","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 8
Abstract
The frictional behaviour and lubrication mechanism of self-lubricating Gr-MoS2-PI-CNT composite were investigated experimentally, characterised by surface preparation method and texture density. The results indicate that the dimples filled with composite solid lubricant (sample TPL) exhibited the best lubrication mechanism with the lowest friction as compared to the smooth surface without lubrication (sample S), textured surface without lubrication (sample T), textured surface burnished with solid lubricant (sample TSL) and textured surface coated with solid lubricant block (sample TBL). The texture density of 41.7% exhibited good friction properties under both higher loads and speeds. The composite solid lubricant formed stable lubricant-peaks on each dimple the by 'slide extrusion accumulation' mechanism with a gradient phenomenon along the sliding direction which improved the self-lubricating effect of the lubricant. The energy dispersive X-ray spectroscopy (EDS) analysis indicates that the solid lubricant has been transferred from the micro-dimples to the space between dimples which improved lubrication.
期刊介绍:
IJSurfSE publishes refereed quality papers in the broad field of surface science and engineering including tribology, but with a special emphasis on the research and development in friction, wear, coatings and surface modification processes such as surface treatment, cladding, machining, polishing and grinding, across multiple scales from nanoscopic to macroscopic dimensions. High-integrity and high-performance surfaces of components have become a central research area in the professional community whose aim is to develop highly reliable ultra-precision devices.