A new sufficient condition for sparse vector recovery via ℓ1 − ℓ2 local minimization

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ning Bi, J. Tan, Wai-Shing Tang
{"title":"A new sufficient condition for sparse vector recovery via ℓ1 − ℓ2 local minimization","authors":"Ning Bi, J. Tan, Wai-Shing Tang","doi":"10.1142/S0219530521500068","DOIUrl":null,"url":null,"abstract":"In this paper, we provide a necessary condition and a sufficient condition such that any [Formula: see text]-sparse vector [Formula: see text] can be recovered from [Formula: see text] via [Formula: see text] local minimization. Moreover, we further verify that the sufficient condition is naturally valid when the restricted isometry constant of the measurement matrix [Formula: see text] satisfies [Formula: see text]. Compared with the existing [Formula: see text] local recoverability condition [Formula: see text], this result shows that [Formula: see text] local recoverability contains more measurement matrices.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S0219530521500068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we provide a necessary condition and a sufficient condition such that any [Formula: see text]-sparse vector [Formula: see text] can be recovered from [Formula: see text] via [Formula: see text] local minimization. Moreover, we further verify that the sufficient condition is naturally valid when the restricted isometry constant of the measurement matrix [Formula: see text] satisfies [Formula: see text]. Compared with the existing [Formula: see text] local recoverability condition [Formula: see text], this result shows that [Formula: see text] local recoverability contains more measurement matrices.
给出了稀疏向量通过1 ~ 2局部极小化恢复的一个新的充分条件
在本文中,我们提供了一个必要条件和一个充分条件,使得任何[公式:见文本]-稀疏向量[公式:看文本]都可以通过[公式:见图文本]局部最小化从[公式:可见文本]中恢复。此外,我们进一步验证了当测量矩阵[公式:见正文]的受限等距常数满足[公式:看正文]时,充分条件自然有效。与现有的[公式:见正文]局部可恢复性条件[公式:见图正文]相比,该结果表明[公式:看正文]局部的可恢复性包含了更多的测量矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信