{"title":"Course keeping control for very large ship using hyperbolic tangent function based on nonlinear decoration technique","authors":"Haochen Hong, Xianku Zhang, Zhongwen Huang","doi":"10.1080/20464177.2023.2212441","DOIUrl":null,"url":null,"abstract":"To solve the problems of difficult course keeping, high energy output, and large wear of very large ships under different sea conditions, a robust controller combining the closed-loop gain shaping algorithm and nonlinear decoration is proposed in this paper. Firstly, a linear controller is designed by using the third-order closed-loop gain shaping algorithm and takes the hyperbolic tangent function as the nonlinear decoration of the controller output, and the robustness of the system is proved by H∞ robust control theory. Secondly, taking ‘Vale Brasil’, an ore carrier with a displacement of 400,000 tons, as the test plant. The nonlinear Nomoto model and nonlinear Norrbin model were established, which were compared with the control effect from the existing controller. Thirdly, simulation experiments were carried out under normal sea state and heavy sea state to prove the effectiveness. The results indicate that the proposed control strategy can achieve the required course faster, and enhances the smoothness of rudder angle actuation compared with the existing controller. It can maintain good control ability under different sea conditions. The proposed controller has the advantages of simple parameter adjustment, better robustness, less energy consumption, and reduced rudder angle. It is more in line with engineering practice and increases ship operation benefits.","PeriodicalId":50152,"journal":{"name":"Journal of Marine Engineering and Technology","volume":"22 1","pages":"213 - 221"},"PeriodicalIF":2.6000,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/20464177.2023.2212441","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
To solve the problems of difficult course keeping, high energy output, and large wear of very large ships under different sea conditions, a robust controller combining the closed-loop gain shaping algorithm and nonlinear decoration is proposed in this paper. Firstly, a linear controller is designed by using the third-order closed-loop gain shaping algorithm and takes the hyperbolic tangent function as the nonlinear decoration of the controller output, and the robustness of the system is proved by H∞ robust control theory. Secondly, taking ‘Vale Brasil’, an ore carrier with a displacement of 400,000 tons, as the test plant. The nonlinear Nomoto model and nonlinear Norrbin model were established, which were compared with the control effect from the existing controller. Thirdly, simulation experiments were carried out under normal sea state and heavy sea state to prove the effectiveness. The results indicate that the proposed control strategy can achieve the required course faster, and enhances the smoothness of rudder angle actuation compared with the existing controller. It can maintain good control ability under different sea conditions. The proposed controller has the advantages of simple parameter adjustment, better robustness, less energy consumption, and reduced rudder angle. It is more in line with engineering practice and increases ship operation benefits.
期刊介绍:
The Journal of Marine Engineering and Technology will publish papers concerned with scientific and theoretical research applied to all aspects of marine engineering and technology in addition to issues associated with the application of technology in the marine environment. The areas of interest will include:
• Fuel technology and Combustion
• Power and Propulsion Systems
• Noise and vibration
• Offshore and Underwater Technology
• Computing, IT and communication
• Pumping and Pipeline Engineering
• Safety and Environmental Assessment
• Electrical and Electronic Systems and Machines
• Vessel Manoeuvring and Stabilisation
• Tribology and Power Transmission
• Dynamic modelling, System Simulation and Control
• Heat Transfer, Energy Conversion and Use
• Renewable Energy and Sustainability
• Materials and Corrosion
• Heat Engine Development
• Green Shipping
• Hydrography
• Subsea Operations
• Cargo Handling and Containment
• Pollution Reduction
• Navigation
• Vessel Management
• Decommissioning
• Salvage Procedures
• Legislation
• Ship and floating structure design
• Robotics Salvage Procedures
• Structural Integrity Cargo Handling and Containment
• Marine resource and acquisition
• Risk Analysis Robotics
• Maintenance and Inspection Planning Vessel Management
• Marine security
• Risk Analysis
• Legislation
• Underwater Vehicles
• Plant and Equipment
• Structural Integrity
• Installation and Repair
• Plant and Equipment
• Maintenance and Inspection Planning.