Application of a generalized Green’s function approach to optimize modeled tidal and tidal residual currents for assessment of the dispersion area of thermal effluent discharges

IF 1.9 3区 工程技术 Q3 ENGINEERING, CIVIL
T. Tsubono, Teruhisa Okada, Yasuo Niida, Yuya Kino, N. Nakashiki
{"title":"Application of a generalized Green’s function approach to optimize modeled tidal and tidal residual currents for assessment of the dispersion area of thermal effluent discharges","authors":"T. Tsubono, Teruhisa Okada, Yasuo Niida, Yuya Kino, N. Nakashiki","doi":"10.1080/21664250.2023.2212860","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper proposes a generalized Green’s Function Approach (GFA) to calibrate the boundary conditions and parameters of a coastal current model. The GFA uses a pseudoinverse for the calculation of control variables, including the boundary conditions and parameters, and a Green’s function matrix, which is the response matrix of sensitivity experiments to the control variables. The GFA was applied to optimize tidal and tidal residual currents in a coastal region with a model simulating the thermal effluent discharged from a power plant. The GFA could be used robustly, regardless of the number of sensitivity analyses, and provided optimal increments for the control variables using a given threshold for the pseudoinverse. The optimization provided the appropriate sea surface conditions to reproduce tidal and tidal residual currents that were consistent with observations. The optimized model allowed an effective and accurate assessment of the environmental impact of the thermal effluent because tidal and tidal residual currents play an important role in the advection and diffusion of thermal effluent.","PeriodicalId":50673,"journal":{"name":"Coastal Engineering Journal","volume":"65 1","pages":"383 - 393"},"PeriodicalIF":1.9000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21664250.2023.2212860","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT This paper proposes a generalized Green’s Function Approach (GFA) to calibrate the boundary conditions and parameters of a coastal current model. The GFA uses a pseudoinverse for the calculation of control variables, including the boundary conditions and parameters, and a Green’s function matrix, which is the response matrix of sensitivity experiments to the control variables. The GFA was applied to optimize tidal and tidal residual currents in a coastal region with a model simulating the thermal effluent discharged from a power plant. The GFA could be used robustly, regardless of the number of sensitivity analyses, and provided optimal increments for the control variables using a given threshold for the pseudoinverse. The optimization provided the appropriate sea surface conditions to reproduce tidal and tidal residual currents that were consistent with observations. The optimized model allowed an effective and accurate assessment of the environmental impact of the thermal effluent because tidal and tidal residual currents play an important role in the advection and diffusion of thermal effluent.
广义格林函数法在优化模拟潮汐和潮汐剩余流中的应用,用于评估热污水排放的分散面积
摘要本文提出了一种广义格林函数方法(GFA)来校准海岸流模型的边界条件和参数。GFA使用伪逆来计算控制变量,包括边界条件和参数,以及格林函数矩阵,这是灵敏度实验对控制变量的响应矩阵。将GFA应用于沿海地区的潮流和潮流剩余流优化,并建立了一个模拟发电厂排放热污水的模型。无论灵敏度分析的数量如何,GFA都可以稳健地使用,并使用给定的伪逆阈值为控制变量提供最佳增量。优化提供了合适的海面条件,以重现与观测结果一致的潮汐和潮汐残余流。由于潮汐和潮汐残余流在热流出物的平流和扩散中起着重要作用,因此优化模型能够有效准确地评估热流出液的环境影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Coastal Engineering Journal
Coastal Engineering Journal 工程技术-工程:大洋
CiteScore
4.60
自引率
8.30%
发文量
0
审稿时长
7.5 months
期刊介绍: Coastal Engineering Journal is a peer-reviewed medium for the publication of research achievements and engineering practices in the fields of coastal, harbor and offshore engineering. The CEJ editors welcome original papers and comprehensive reviews on waves and currents, sediment motion and morphodynamics, as well as on structures and facilities. Reports on conceptual developments and predictive methods of environmental processes are also published. Topics also include hard and soft technologies related to coastal zone development, shore protection, and prevention or mitigation of coastal disasters. The journal is intended to cover not only fundamental studies on analytical models, numerical computation and laboratory experiments, but also results of field measurements and case studies of real projects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信