On the unicity of the theory of higher categories

IF 3.5 1区 数学 Q1 MATHEMATICS
C. Barwick, Christopher J. Schommer-Pries
{"title":"On the unicity of the theory of higher categories","authors":"C. Barwick, Christopher J. Schommer-Pries","doi":"10.1090/JAMS/972","DOIUrl":null,"url":null,"abstract":"<p>We axiomatise the theory of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis normal infinity comma n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(\\infty ,n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-categories. We prove that the space of theories of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis normal infinity comma n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(\\infty ,n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-categories is a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B left-parenthesis double-struck upper Z slash 2 right-parenthesis Superscript n\"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">B(\\mathbb {Z}/2)^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We prove that Rezk’s complete Segal <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Theta Subscript n\"> <mml:semantics> <mml:msub> <mml:mi mathvariant=\"normal\">Θ<!-- Θ --></mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\Theta _n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> spaces, Simpson and Tamsamani’s Segal <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-categories, the first author’s <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-fold complete Segal spaces, Kan and the first author’s <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-relative categories, and complete Segal space objects in any model of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis normal infinity comma n minus 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(\\infty , n-1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-categories all satisfy our axioms. Consequently, these theories are all equivalent in a manner that is unique up to the action of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis double-struck upper Z slash 2 right-parenthesis Superscript n\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(\\mathbb {Z}/2)^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"1 1","pages":"1"},"PeriodicalIF":3.5000,"publicationDate":"2021-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAMS/972","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 26

Abstract

We axiomatise the theory of ( , n ) (\infty ,n) -categories. We prove that the space of theories of ( , n ) (\infty ,n) -categories is a B ( Z / 2 ) n B(\mathbb {Z}/2)^n . We prove that Rezk’s complete Segal Θ n \Theta _n spaces, Simpson and Tamsamani’s Segal n n -categories, the first author’s n n -fold complete Segal spaces, Kan and the first author’s n n -relative categories, and complete Segal space objects in any model of ( , n 1 ) (\infty , n-1) -categories all satisfy our axioms. Consequently, these theories are all equivalent in a manner that is unique up to the action of ( Z / 2 ) n (\mathbb {Z}/2)^n .

论高等范畴理论的唯一性
我们公理化了(∞,n)(infty,n)-范畴的理论。我们证明了(∞,n)(infty,n)-范畴的理论空间是一个B(Z/2)nB(\mathbb{Z}/2)^n。我们证明了Rezk的完全SegalΘn\Theta _n空间,Simpson和Tamsamani的Segal n n-范畴,第一作者的n n-折叠完全Segal空间,Kan和第一作者的nn-相对范畴,和(∞,n−1)(infty,n-1)-范畴的任何模型中的完全分段空间对象都满足我们的公理。因此,这些理论都是等价的,在(Z/2)n(\mathbb{Z}/2)^n的作用下是唯一的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信