{"title":"On the unicity of the theory of higher categories","authors":"C. Barwick, Christopher J. Schommer-Pries","doi":"10.1090/JAMS/972","DOIUrl":null,"url":null,"abstract":"<p>We axiomatise the theory of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis normal infinity comma n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(\\infty ,n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-categories. We prove that the space of theories of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis normal infinity comma n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(\\infty ,n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-categories is a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B left-parenthesis double-struck upper Z slash 2 right-parenthesis Superscript n\"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">B(\\mathbb {Z}/2)^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We prove that Rezk’s complete Segal <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Theta Subscript n\"> <mml:semantics> <mml:msub> <mml:mi mathvariant=\"normal\">Θ<!-- Θ --></mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\Theta _n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> spaces, Simpson and Tamsamani’s Segal <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-categories, the first author’s <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-fold complete Segal spaces, Kan and the first author’s <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-relative categories, and complete Segal space objects in any model of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis normal infinity comma n minus 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(\\infty , n-1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-categories all satisfy our axioms. Consequently, these theories are all equivalent in a manner that is unique up to the action of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis double-struck upper Z slash 2 right-parenthesis Superscript n\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(\\mathbb {Z}/2)^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"1 1","pages":"1"},"PeriodicalIF":3.5000,"publicationDate":"2021-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAMS/972","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 26
Abstract
We axiomatise the theory of (∞,n)(\infty ,n)-categories. We prove that the space of theories of (∞,n)(\infty ,n)-categories is a B(Z/2)nB(\mathbb {Z}/2)^n. We prove that Rezk’s complete Segal Θn\Theta _n spaces, Simpson and Tamsamani’s Segal nn-categories, the first author’s nn-fold complete Segal spaces, Kan and the first author’s nn-relative categories, and complete Segal space objects in any model of (∞,n−1)(\infty , n-1)-categories all satisfy our axioms. Consequently, these theories are all equivalent in a manner that is unique up to the action of (Z/2)n(\mathbb {Z}/2)^n.
我们公理化了(∞,n)(infty,n)-范畴的理论。我们证明了(∞,n)(infty,n)-范畴的理论空间是一个B(Z/2)nB(\mathbb{Z}/2)^n。我们证明了Rezk的完全SegalΘn\Theta _n空间,Simpson和Tamsamani的Segal n n-范畴,第一作者的n n-折叠完全Segal空间,Kan和第一作者的nn-相对范畴,和(∞,n−1)(infty,n-1)-范畴的任何模型中的完全分段空间对象都满足我们的公理。因此,这些理论都是等价的,在(Z/2)n(\mathbb{Z}/2)^n的作用下是唯一的。
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.