{"title":"Shear strength behavior of organic soils treated with fly ash and fly ash-based geopolymer","authors":"Sarah K. Ameen, A. Abdulkareem, N. Mahmood","doi":"10.1515/jmbm-2022-0264","DOIUrl":null,"url":null,"abstract":"Abstract Organic soil is a problematic soil that needs to be treated before construction because of the low shear strength and high compressibility. Using by-product materials, such as fly ash (FA), to improve soils is a cost-effective and sustainable procedure. Because treatment with FA may lead to reduce shear strength, a FA-based geopolymer was used with a cohesive organic soil to substitute the reduction in strength. A series of unconfined compressive strength tests (UCS) were conducted on compacted specimens treated with FA and geopolymer. The geopolymer was produced by adding sodium hydroxide to activate the FA. Different levels of FA content, curing period, and temperature were applied to the specimens. The results indicate that for the FA treated specimens, the UCS decreased as the FA increased. For the geopolymer-treated specimens, as FA percentage in the geopolymer increased, the UCS increased and the axial strain at failure decreased. The optimum content of FA, in the geopolymer, was 20%, and the highest UCS was achieved at a curing period of 28 days at a temperature level of 65°C. Based on the obtained results, FA-based geopolymer can effectively be used to improve the strength of organic soils.","PeriodicalId":17354,"journal":{"name":"Journal of the Mechanical Behavior of Materials","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmbm-2022-0264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Organic soil is a problematic soil that needs to be treated before construction because of the low shear strength and high compressibility. Using by-product materials, such as fly ash (FA), to improve soils is a cost-effective and sustainable procedure. Because treatment with FA may lead to reduce shear strength, a FA-based geopolymer was used with a cohesive organic soil to substitute the reduction in strength. A series of unconfined compressive strength tests (UCS) were conducted on compacted specimens treated with FA and geopolymer. The geopolymer was produced by adding sodium hydroxide to activate the FA. Different levels of FA content, curing period, and temperature were applied to the specimens. The results indicate that for the FA treated specimens, the UCS decreased as the FA increased. For the geopolymer-treated specimens, as FA percentage in the geopolymer increased, the UCS increased and the axial strain at failure decreased. The optimum content of FA, in the geopolymer, was 20%, and the highest UCS was achieved at a curing period of 28 days at a temperature level of 65°C. Based on the obtained results, FA-based geopolymer can effectively be used to improve the strength of organic soils.
期刊介绍:
The journal focuses on the micromechanics and nanomechanics of materials, the relationship between structure and mechanical properties, material instabilities and fracture, as well as size effects and length/time scale transitions. Articles on cutting edge theory, simulations and experiments – used as tools for revealing novel material properties and designing new devices for structural, thermo-chemo-mechanical, and opto-electro-mechanical applications – are encouraged. Synthesis/processing and related traditional mechanics/materials science themes are not within the scope of JMBM. The Editorial Board also organizes topical issues on emerging areas by invitation. Topics Metals and Alloys Ceramics and Glasses Soils and Geomaterials Concrete and Cementitious Materials Polymers and Composites Wood and Paper Elastomers and Biomaterials Liquid Crystals and Suspensions Electromagnetic and Optoelectronic Materials High-energy Density Storage Materials Monument Restoration and Cultural Heritage Preservation Materials Nanomaterials Complex and Emerging Materials.