Mutual coupling reduction with Peyton Turtle pattern nearfield surface for MIMO patch antenna

IF 0.8 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Frequenz Pub Date : 2023-02-21 DOI:10.1515/freq-2022-0150
Alireza Omidvar, P. Rezaei, E. Atashpanjeh
{"title":"Mutual coupling reduction with Peyton Turtle pattern nearfield surface for MIMO patch antenna","authors":"Alireza Omidvar, P. Rezaei, E. Atashpanjeh","doi":"10.1515/freq-2022-0150","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, a Decoupling Nearfield Surface (DNS) is designed above the antenna, to reduce the mutual coupling of closely two or more patch array. In this way, the electrical and magnetic distributions are utilized to demonstrate the mechanism of isolation. The proposed DNS element creates the electric field distributions with an orthogonal mode and the magnetic field distributions with excitation in substrate such that the effective suppression of antenna mutual coupling is obtained. The DNS element can be easily applied to the Multiple-Input Multiple-Output (MIMO) antennas that having multiple patch elements. Moreover, the proposed structure is implemented practically and simulated for a patched antenna. The measurement and simulation results verifies that the isolation is more than 20 dB and the isolated impedance bandwidth is about 7%.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":"77 1","pages":"395 - 401"},"PeriodicalIF":0.8000,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frequenz","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/freq-2022-0150","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, a Decoupling Nearfield Surface (DNS) is designed above the antenna, to reduce the mutual coupling of closely two or more patch array. In this way, the electrical and magnetic distributions are utilized to demonstrate the mechanism of isolation. The proposed DNS element creates the electric field distributions with an orthogonal mode and the magnetic field distributions with excitation in substrate such that the effective suppression of antenna mutual coupling is obtained. The DNS element can be easily applied to the Multiple-Input Multiple-Output (MIMO) antennas that having multiple patch elements. Moreover, the proposed structure is implemented practically and simulated for a patched antenna. The measurement and simulation results verifies that the isolation is more than 20 dB and the isolated impedance bandwidth is about 7%.
MIMO贴片天线Peyton-Turtle模式近场表面的互耦抑制
摘要本文在天线上方设计了一种解耦近场表面(DNS),以减少两个或多个紧密贴片阵列的相互耦合。通过这种方式,利用电场和磁场分布来证明隔离的机制。所提出的DNS元件在衬底中创建具有正交模式的电场分布和具有激励的磁场分布,从而获得天线互耦的有效抑制。DNS元件可以容易地应用于具有多个贴片元件的多输入多输出(MIMO)天线。此外,还对所提出的结构进行了实际实现,并对贴片天线进行了仿真。测量和仿真结果表明,隔离度大于20dB,隔离阻抗带宽约为7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frequenz
Frequenz 工程技术-工程:电子与电气
CiteScore
2.40
自引率
18.20%
发文量
81
审稿时长
3 months
期刊介绍: Frequenz is one of the leading scientific and technological journals covering all aspects of RF-, Microwave-, and THz-Engineering. It is a peer-reviewed, bi-monthly published journal. Frequenz was first published in 1947 with a circulation of 7000 copies, focusing on telecommunications. Today, the major objective of Frequenz is to highlight current research activities and development efforts in RF-, Microwave-, and THz-Engineering throughout a wide frequency spectrum ranging from radio via microwave up to THz frequencies. RF-, Microwave-, and THz-Engineering is a very active area of Research & Development as well as of Applications in a wide variety of fields. It has been the key to enabling technologies responsible for phenomenal growth of satellite broadcasting, wireless communications, satellite and terrestrial mobile communications and navigation, high-speed THz communication systems. It will open up new technologies in communications, radar, remote sensing and imaging, in identification and localization as well as in sensors, e.g. for wireless industrial process and environmental monitoring as well as for biomedical sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信