{"title":"Isotropic Gravastar Model in Rastall Gravity","authors":"G. Abbas, K. Majeed","doi":"10.1155/2020/8861168","DOIUrl":null,"url":null,"abstract":"In the present paper, we have introduced a new model of gravastar with an isotropic matter distribution in Rastall gravity by the Mazur–Mottola (2004) mechanism. Mazur–Mottola approach is about the construction of gravastar which is predicted as an alternative to black hole. By following this convention, we define gravastar in the form of three phases. The first one is an interior phase which has negative density; the second part consists of thin shell comprising ultrarelativistic stiff fluid for which we have discussed the length, energy, and entropy. By the graphical analysis of entropy, we have shown that our proposed thin shell gravastar model is potentially stable. The third phase of gravastar is defined by the exterior Schwarzschild geometry. For the interior of gravastar, we have found the analytical solutions free from any singularity and the event horizon in the framework of Rastall gravity.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":"1-10"},"PeriodicalIF":1.6000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/8861168","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2020/8861168","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 8
Abstract
In the present paper, we have introduced a new model of gravastar with an isotropic matter distribution in Rastall gravity by the Mazur–Mottola (2004) mechanism. Mazur–Mottola approach is about the construction of gravastar which is predicted as an alternative to black hole. By following this convention, we define gravastar in the form of three phases. The first one is an interior phase which has negative density; the second part consists of thin shell comprising ultrarelativistic stiff fluid for which we have discussed the length, energy, and entropy. By the graphical analysis of entropy, we have shown that our proposed thin shell gravastar model is potentially stable. The third phase of gravastar is defined by the exterior Schwarzschild geometry. For the interior of gravastar, we have found the analytical solutions free from any singularity and the event horizon in the framework of Rastall gravity.
期刊介绍:
Advances in Astronomy publishes articles in all areas of astronomy, astrophysics, and cosmology. The journal accepts both observational and theoretical investigations into celestial objects and the wider universe, as well as the reports of new methods and instrumentation for their study.