Tide Prediction in Prigi Beach using Support Vector Regression (SVR) Method

Tri Mar'ati Nur Utami, D. C. R. Novitasari, F. Setiawan, Nurissaidah Ulinnuha, Yuniar Farida
{"title":"Tide Prediction in Prigi Beach using Support Vector Regression (SVR) Method","authors":"Tri Mar'ati Nur Utami, D. C. R. Novitasari, F. Setiawan, Nurissaidah Ulinnuha, Yuniar Farida","doi":"10.15294/sji.v8i2.28906","DOIUrl":null,"url":null,"abstract":"Purpose: Prigi Beach has the largest fishing port in East Java, but the topography of this beach is quite gentle, so it is prone to disasters such as tidal flooding. The tides of seawater strongly influence the occurrence of this natural event. Therefore, information on tidal level data is essential. This study aims to provide information about tidal predictions.Methods: In this case using the SVE method. Input data and time were examined using PACF autocorrelation plots to form input data patterns. The working principle of SVR is to find the best hyperplane in the form of a function that produces the slightest error.Result: The best SVR model built from the linear kernel, the MAPE value is 0.5510%, the epsilon is 0.0614, and the bias is 0.6015. The results of the tidal prediction on Prigi Beach in September 2020 showed that the highest tide occurred on September 19, 2020, at 10.00 PM, and the lowest tide occurred on September 3, 2020, at 04.00 AM. Value: After conducting experiments on three types of kernels on SVR, it is said that linear kernels can predict improvements better than polynomial and gaussian kernels.","PeriodicalId":30781,"journal":{"name":"Scientific Journal of Informatics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Journal of Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15294/sji.v8i2.28906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Purpose: Prigi Beach has the largest fishing port in East Java, but the topography of this beach is quite gentle, so it is prone to disasters such as tidal flooding. The tides of seawater strongly influence the occurrence of this natural event. Therefore, information on tidal level data is essential. This study aims to provide information about tidal predictions.Methods: In this case using the SVE method. Input data and time were examined using PACF autocorrelation plots to form input data patterns. The working principle of SVR is to find the best hyperplane in the form of a function that produces the slightest error.Result: The best SVR model built from the linear kernel, the MAPE value is 0.5510%, the epsilon is 0.0614, and the bias is 0.6015. The results of the tidal prediction on Prigi Beach in September 2020 showed that the highest tide occurred on September 19, 2020, at 10.00 PM, and the lowest tide occurred on September 3, 2020, at 04.00 AM. Value: After conducting experiments on three types of kernels on SVR, it is said that linear kernels can predict improvements better than polynomial and gaussian kernels.
用支持向量回归(SVR)方法预测普里吉海滩的潮汐
目的:普里吉海滩是东爪哇岛最大的渔港,但该海滩地形平缓,容易发生潮汐洪水等灾害。海水的潮汐强烈影响着这一自然事件的发生。因此,有关潮汐水位数据的信息至关重要。这项研究旨在提供有关潮汐预测的信息。方法:本例采用SVE方法。使用PACF自相关图检查输入数据和时间以形成输入数据模式。SVR的工作原理是以产生最小误差的函数的形式找到最佳超平面。结果:由线性核建立的最佳SVR模型,MAPE值为0.5510%,ε为0.0614,偏差为0.6015。2020年9月普里吉海滩的潮汐预测结果显示,最高潮汐发生在2020年9月份19日晚上10点,最低潮汐发生在9月份3日凌晨4点。数值:在SVR上对三种类型的核进行了实验后,据说线性核比多项式核和高斯核更能预测改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
13
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信