INCO Cyanide destruction insights from plant reviews and laboratory evaluations

IF 0.9 Q3 MINING & MINERAL PROCESSING
P. Breuer, D. Hewitt
{"title":"INCO Cyanide destruction insights from plant reviews and laboratory evaluations","authors":"P. Breuer, D. Hewitt","doi":"10.1080/25726641.2019.1633506","DOIUrl":null,"url":null,"abstract":"ABSTRACT Insights from a number of INCO cyanide destruction process reviews and studies are presented and discussed. In particular, the performance of three plants are discussed in terms of reagent (sulfite and oxygen) stoichiometry and utilisation, and the impact of process design, control, reagent addition points and slurry properties. Discussed also is the effectiveness of hydrogen peroxide use (supplementary oxygen source) in two of the plants reviewed. Oxygen mass transfer often limits the capacity of an INCO process. Hydrogen peroxide addition can improve the capacity, though process design improvements could provide a better economic outcome. Optimisation of the INCO process requires constant monitoring of feed and discharge weak acid dissociable cyanide concentrations and maintaining low but measurable dissolved oxygen in the reactor (e.g. 2–5 mg L−1). Changing solids properties over time requires adjustment to the sodium metabisulfate-to-weak acid dissociable cyanide weight ratio used for the destruction process control.","PeriodicalId":43710,"journal":{"name":"Mineral Processing and Extractive Metallurgy-Transactions of the Institutions of Mining and Metallurgy","volume":"129 1","pages":"104 - 113"},"PeriodicalIF":0.9000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/25726641.2019.1633506","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineral Processing and Extractive Metallurgy-Transactions of the Institutions of Mining and Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25726641.2019.1633506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 6

Abstract

ABSTRACT Insights from a number of INCO cyanide destruction process reviews and studies are presented and discussed. In particular, the performance of three plants are discussed in terms of reagent (sulfite and oxygen) stoichiometry and utilisation, and the impact of process design, control, reagent addition points and slurry properties. Discussed also is the effectiveness of hydrogen peroxide use (supplementary oxygen source) in two of the plants reviewed. Oxygen mass transfer often limits the capacity of an INCO process. Hydrogen peroxide addition can improve the capacity, though process design improvements could provide a better economic outcome. Optimisation of the INCO process requires constant monitoring of feed and discharge weak acid dissociable cyanide concentrations and maintaining low but measurable dissolved oxygen in the reactor (e.g. 2–5 mg L−1). Changing solids properties over time requires adjustment to the sodium metabisulfate-to-weak acid dissociable cyanide weight ratio used for the destruction process control.
来自工厂审查和实验室评估的氰化物破坏见解
本文介绍并讨论了一些INCO氰化物销毁工艺综述和研究的见解。特别是,从试剂(亚硫酸盐和氧气)的化学计量和利用率以及工艺设计、控制、试剂添加点和浆料性质的影响等方面讨论了三种装置的性能。还讨论了在两个综述的工厂中使用过氧化氢(补充氧源)的有效性。氧气的传质通常会限制INCO工艺的能力。添加过氧化氢可以提高产能,尽管工艺设计的改进可以提供更好的经济结果。INCO工艺的优化需要不断监测进料和排出弱酸可离解氰化物的浓度,并保持反应器中溶解氧低但可测量(例如2-5 毫克 L−1)。随着时间的推移改变固体性质需要调整用于破坏过程控制的偏亚硫酸钠与弱酸可离解氰化物的重量比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
6
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信