Spread of Infection over P.A. random graphs with edge insertion

Pub Date : 2021-03-30 DOI:10.30757/alea.v19-50
C. Alves, Rodrigo Ribeiro
{"title":"Spread of Infection over P.A. random graphs with edge insertion","authors":"C. Alves, Rodrigo Ribeiro","doi":"10.30757/alea.v19-50","DOIUrl":null,"url":null,"abstract":"In this work we investigate a bootstrap percolation process on random graphs generated by a random graph model which combines preferential attachment and edge insertion between previously existing vertices. The probabilities of adding either a new vertex or a new connection between previously added vertices are time dependent and given by a function $f$ called the edge-step function. We show that under integrability conditions over the edge-step function the graphs are highly susceptible to the spread of infections, which requires only $3$ steps to infect a positive fraction of the whole graph. To prove this result, we rely on a quantitative lower bound for the maximum degree that might be of independent interest.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v19-50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work we investigate a bootstrap percolation process on random graphs generated by a random graph model which combines preferential attachment and edge insertion between previously existing vertices. The probabilities of adding either a new vertex or a new connection between previously added vertices are time dependent and given by a function $f$ called the edge-step function. We show that under integrability conditions over the edge-step function the graphs are highly susceptible to the spread of infections, which requires only $3$ steps to infect a positive fraction of the whole graph. To prove this result, we rely on a quantitative lower bound for the maximum degree that might be of independent interest.
分享
查看原文
带边插入的P.A.随机图上的感染传播
在这项工作中,我们研究了由随机图模型生成的随机图上的自举渗流过程,该模型结合了先前存在的顶点之间的优先附着和边插入。添加新顶点或先前添加的顶点之间的新连接的概率是时间相关的,并且由称为边阶函数的函数f给出。我们证明了在边阶函数上的可积条件下,图对感染的传播非常敏感,这只需要3个步骤就可以感染整个图的正部分。为了证明这一结果,我们依赖于可能独立感兴趣的最大程度的定量下限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信