An Optimal Neural Network for Hourly and Daily Energy Consumption Prediction in Buildings

IF 0.8 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Fazli Wahid, R. Ghazali, L. H. Ismail, Ali M. Algarwi Aseere
{"title":"An Optimal Neural Network for Hourly and Daily Energy Consumption Prediction in Buildings","authors":"Fazli Wahid, R. Ghazali, L. H. Ismail, Ali M. Algarwi Aseere","doi":"10.4018/ijsir.316649","DOIUrl":null,"url":null,"abstract":"In this work, hourly and daily energy consumption prediction has been carried out using multi-layer feed forward neural network. The network designed in the proposed architecture has three layers, namely input layer, hidden layer, and output layer. The input layer had eight neurons, output layer had one neuron, and the number of neurons in the hidden layer was varied to find an optimal number for accurate prediction. Different parameters of the neural network were varied repeatedly, and the prediction accuracy was observed for each combination of different parameters to find an optimized combination of different parameters. For hourly energy consumption prediction, a total of six weeks data (September 1 to October 12, 2004) of 10 residential buildings has been used whereas for daily energy consumption prediction, a total of 52 weeks data (January 2004 to December 2004) of 30 residential buildings has been used. To evaluate the performance of the proposed approach, different performance evaluation measurements were applied.","PeriodicalId":44265,"journal":{"name":"International Journal of Swarm Intelligence Research","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Swarm Intelligence Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijsir.316649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, hourly and daily energy consumption prediction has been carried out using multi-layer feed forward neural network. The network designed in the proposed architecture has three layers, namely input layer, hidden layer, and output layer. The input layer had eight neurons, output layer had one neuron, and the number of neurons in the hidden layer was varied to find an optimal number for accurate prediction. Different parameters of the neural network were varied repeatedly, and the prediction accuracy was observed for each combination of different parameters to find an optimized combination of different parameters. For hourly energy consumption prediction, a total of six weeks data (September 1 to October 12, 2004) of 10 residential buildings has been used whereas for daily energy consumption prediction, a total of 52 weeks data (January 2004 to December 2004) of 30 residential buildings has been used. To evaluate the performance of the proposed approach, different performance evaluation measurements were applied.
建筑时、日能耗预测的最优神经网络
在这项工作中,使用多层前馈神经网络进行了每小时和每天的能耗预测。在所提出的体系结构中设计的网络有三层,即输入层、隐藏层和输出层。输入层有八个神经元,输出层有一个神经元,隐藏层中的神经元数量变化以找到准确预测的最佳数量。重复改变神经网络的不同参数,并观察不同参数的每个组合的预测精度,以找到不同参数的优化组合。对于每小时能耗预测,共使用了10栋住宅楼的6周数据(2004年9月1日至10月12日),而对于每日能耗预测,则使用了30栋住宅楼共52周数据(2005年1月至2004年12月)。为了评估所提出方法的性能,采用了不同的性能评估测量方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Swarm Intelligence Research
International Journal of Swarm Intelligence Research COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
2.50
自引率
0.00%
发文量
76
期刊介绍: The mission of the International Journal of Swarm Intelligence Research (IJSIR) is to become a leading international and well-referred journal in swarm intelligence, nature-inspired optimization algorithms, and their applications. This journal publishes original and previously unpublished articles including research papers, survey papers, and application papers, to serve as a platform for facilitating and enhancing the information shared among researchers in swarm intelligence research areas ranging from algorithm developments to real-world applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信