Kota Nakajima, Yukie Tanaka, K. Katsura, Tomoaki Yamaguchi, Tomoya Watanabe, T. Shiraiwa
{"title":"Biomass estimation of World rice (Oryza sativa L.) core collection based on the convolutional neural network and digital images of canopy","authors":"Kota Nakajima, Yukie Tanaka, K. Katsura, Tomoaki Yamaguchi, Tomoya Watanabe, T. Shiraiwa","doi":"10.1080/1343943X.2023.2210767","DOIUrl":null,"url":null,"abstract":"ABSTRACT Above-ground biomass (AGB) is an important indicator of crop productivity. Destructive measurements of AGB incur huge costs, and most non-destructive estimations cannot be applied to diverse cultivars having different canopy architectures. This insufficient access to AGB data has potentially limited improvements in crop productivity. Recently, a deep learning technique called convolutional neural network (CNN) has been applied to estimate crop AGB due to its high capacity for digital image recognition. However, the versatility of the CNN-based AGB estimation for diverse cultivars is still unclear. We established and evaluated a CNN-based estimation method for rice AGB using digital images with 59 diverse cultivars which were mostly in World Rice Core Collection. Across two years at two locations, we took 12,183 images of 59 cultivars with commercial digital cameras and manually obtained their corresponding AGB. The CNN model was established by using 28 cultivars and showed high accuracy (R2 = 0.95) to the test dataset. We further evaluated the performance of the CNN model by using 31 cultivars, which were not in the model establishment. The CNN model successfully estimated AGB when the observed AGB was lesser than 924 g m−2 (R2 = 0.87), whereas it underestimated AGB when the observed AGB was greater than 924 g m−2 (R2 = 0.02). This underestimation might be improved by adding training data with a greater AGB in further study. The present study indicates that this CNN-based estimation method is highly versatile and could be a practical tool for monitoring crop AGB in diverse cultivars.","PeriodicalId":20259,"journal":{"name":"Plant Production Science","volume":"26 1","pages":"187 - 196"},"PeriodicalIF":1.6000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Production Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/1343943X.2023.2210767","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 2
Abstract
ABSTRACT Above-ground biomass (AGB) is an important indicator of crop productivity. Destructive measurements of AGB incur huge costs, and most non-destructive estimations cannot be applied to diverse cultivars having different canopy architectures. This insufficient access to AGB data has potentially limited improvements in crop productivity. Recently, a deep learning technique called convolutional neural network (CNN) has been applied to estimate crop AGB due to its high capacity for digital image recognition. However, the versatility of the CNN-based AGB estimation for diverse cultivars is still unclear. We established and evaluated a CNN-based estimation method for rice AGB using digital images with 59 diverse cultivars which were mostly in World Rice Core Collection. Across two years at two locations, we took 12,183 images of 59 cultivars with commercial digital cameras and manually obtained their corresponding AGB. The CNN model was established by using 28 cultivars and showed high accuracy (R2 = 0.95) to the test dataset. We further evaluated the performance of the CNN model by using 31 cultivars, which were not in the model establishment. The CNN model successfully estimated AGB when the observed AGB was lesser than 924 g m−2 (R2 = 0.87), whereas it underestimated AGB when the observed AGB was greater than 924 g m−2 (R2 = 0.02). This underestimation might be improved by adding training data with a greater AGB in further study. The present study indicates that this CNN-based estimation method is highly versatile and could be a practical tool for monitoring crop AGB in diverse cultivars.
期刊介绍:
Plant Production Science publishes original research reports on field crops and resource plants, their production and related subjects, covering a wide range of sciences; physiology, biotechnology, morphology, ecology, cropping system, production technology and post harvest management. Studies on plant production with special attention to resource management and the environment are also welcome. Field surveys on cropping or farming system are also accepted. Articles with a background in other research areas such as soil science, meteorology, biometry, product process and plant protection will be accepted as long as they are significantly related to plant production.