{"title":"Detecting changes in the second moment structure of high-dimensional sensor-type data in a K-sample setting","authors":"Nils Mause, A. Steland","doi":"10.1080/07474946.2020.1823192","DOIUrl":null,"url":null,"abstract":"Abstract The K sample problem for high-dimensional vector time series is studied, especially focusing on sensor data streams, in order to analyze the second moment structure and detect changes across samples and/or across variables cumulated sum (CUSUM) statistics of bilinear forms of the sample covariance matrix. In this model, K independent vector time series are observed over a time span which may correspond to K sensors (locations) yielding d-dimensional data as well as K locations where d sensors emit univariate data. Unequal sample sizes are considered as arising when the sampling rate of the sensors differs. We provide large-sample approximations and two related change point statistics, a sum of squares and a pooled variance statistic. The resulting procedures are investigated by simulations and illustrated by analyzing a real data set.","PeriodicalId":48879,"journal":{"name":"Sequential Analysis-Design Methods and Applications","volume":"39 1","pages":"336 - 366"},"PeriodicalIF":0.6000,"publicationDate":"2020-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07474946.2020.1823192","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sequential Analysis-Design Methods and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07474946.2020.1823192","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract The K sample problem for high-dimensional vector time series is studied, especially focusing on sensor data streams, in order to analyze the second moment structure and detect changes across samples and/or across variables cumulated sum (CUSUM) statistics of bilinear forms of the sample covariance matrix. In this model, K independent vector time series are observed over a time span which may correspond to K sensors (locations) yielding d-dimensional data as well as K locations where d sensors emit univariate data. Unequal sample sizes are considered as arising when the sampling rate of the sensors differs. We provide large-sample approximations and two related change point statistics, a sum of squares and a pooled variance statistic. The resulting procedures are investigated by simulations and illustrated by analyzing a real data set.
期刊介绍:
The purpose of Sequential Analysis is to contribute to theoretical and applied aspects of sequential methodologies in all areas of statistical science. Published papers highlight the development of new and important sequential approaches.
Interdisciplinary articles that emphasize the methodology of practical value to applied researchers and statistical consultants are highly encouraged. Papers that cover contemporary areas of applications including animal abundance, bioequivalence, communication science, computer simulations, data mining, directional data, disease mapping, environmental sampling, genome, imaging, microarrays, networking, parallel processing, pest management, sonar detection, spatial statistics, tracking, and engineering are deemed especially important. Of particular value are expository review articles that critically synthesize broad-based statistical issues. Papers on case-studies are also considered. All papers are refereed.