Tongan Jin, M. Hall, J. Vienna, W. Eaton, J. Amoroso, B. Wiersma, Wenxia Li, Alexander W. Abboud, D. Guillen, A. Kruger
{"title":"Glass-contact refractory of the nuclear waste vitrification melters in the United States: a review of corrosion data and melter life","authors":"Tongan Jin, M. Hall, J. Vienna, W. Eaton, J. Amoroso, B. Wiersma, Wenxia Li, Alexander W. Abboud, D. Guillen, A. Kruger","doi":"10.1080/09506608.2023.2211469","DOIUrl":null,"url":null,"abstract":"ABSTRACT The performance of the refractory lining in glass melters used for nuclear waste vitrification is critical to the melter reliability for long-term continuous operation. Monofrax® K-3, a high Cr2O3 fused cast refractory material, has been widely used to build the liners of nuclear waste glass melters in the United States. Corrosion behaviour of Monofrax® K-3 refractory has been evaluated based on crucible-scale testing, inspection of the refractory components following scaled melter testing, and inspections of the Defense Waste Processing Facility (DWPF) melter refractory after service. The literature generally consists of empirical models based on short-term testing to describe refractory corrosion dependence on glass composition. Corrosion data from tests with longer testing times, at various temperatures, in the presence of molten salts, and with different redox reactions in the plenum atmosphere exist, may be insufficient to provide accurate refractory service life estimates. Additionally, the corrosion data collected under actual and scaled melter operating conditions are limited. Recommendations to achieve more direct correlation between the laboratory refractory corrosion data predictions and the observed melter service life are discussed to allow for more accurate predictions of the useful life of melter refractory linings.","PeriodicalId":14427,"journal":{"name":"International Materials Reviews","volume":" ","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Materials Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09506608.2023.2211469","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT The performance of the refractory lining in glass melters used for nuclear waste vitrification is critical to the melter reliability for long-term continuous operation. Monofrax® K-3, a high Cr2O3 fused cast refractory material, has been widely used to build the liners of nuclear waste glass melters in the United States. Corrosion behaviour of Monofrax® K-3 refractory has been evaluated based on crucible-scale testing, inspection of the refractory components following scaled melter testing, and inspections of the Defense Waste Processing Facility (DWPF) melter refractory after service. The literature generally consists of empirical models based on short-term testing to describe refractory corrosion dependence on glass composition. Corrosion data from tests with longer testing times, at various temperatures, in the presence of molten salts, and with different redox reactions in the plenum atmosphere exist, may be insufficient to provide accurate refractory service life estimates. Additionally, the corrosion data collected under actual and scaled melter operating conditions are limited. Recommendations to achieve more direct correlation between the laboratory refractory corrosion data predictions and the observed melter service life are discussed to allow for more accurate predictions of the useful life of melter refractory linings.
期刊介绍:
International Materials Reviews (IMR) is a comprehensive publication that provides in-depth coverage of the current state and advancements in various materials technologies. With contributions from internationally respected experts, IMR offers a thorough analysis of the subject matter. It undergoes rigorous evaluation by committees in the United States and United Kingdom for ensuring the highest quality of content.
Published by Sage on behalf of ASM International and the Institute of Materials, Minerals and Mining (UK), IMR is a valuable resource for professionals in the field. It is available online through Sage's platform, facilitating convenient access to its wealth of information.
Jointly produced by ASM International and the Institute of Materials, Minerals and Mining (UK), IMR focuses on technologies that impact industries dealing with metals, structural ceramics, composite materials, and electronic materials. Its coverage spans from practical applications to theoretical and practical aspects of material extraction, production, fabrication, properties, and behavior.