{"title":"Machine Learning for Single and Complex 3D Head Gestures: Classification in Human-Computer Interaction","authors":"Dr. Amina Atiya Dawood, Balasem Alawi Hussain","doi":"10.14704/web/v19i1/web19095","DOIUrl":null,"url":null,"abstract":"This paper presents a new Hidden Markov Model based approach for fast and automatic detection and classification of head movements in real time dynamic videos. The model has been developed to utilize human-computer interaction applications by using only the laptop webcam. The proposed model has the ability to predict single head and combined simultaneously in fast responses. Other models paid more attention to classify head nod and shake only, but our model contribute the role of other head movements. The model proposed here doesn’t need any user intervention or previous knowledge of its environment. In addition, there is no limitation on illumination changes and occlusions, as well as no restrictions on head movements ranges. The model achieved significant results and efficient performances when tested on unseen data. As the model accuracies were 94%, 99%, 83%, 87%, 93%, 96% for all head gestures (rest, nod, turn, shake, tilt and tilting) respectively. On the other hand, the model accuracy was 99% and 88% for combined and single cues respectively. The aim of this model is to provide a fast application to infer and predict human emotions and affective states in real time through head gestures.","PeriodicalId":35441,"journal":{"name":"Webology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Webology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14704/web/v19i1/web19095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 2
Abstract
This paper presents a new Hidden Markov Model based approach for fast and automatic detection and classification of head movements in real time dynamic videos. The model has been developed to utilize human-computer interaction applications by using only the laptop webcam. The proposed model has the ability to predict single head and combined simultaneously in fast responses. Other models paid more attention to classify head nod and shake only, but our model contribute the role of other head movements. The model proposed here doesn’t need any user intervention or previous knowledge of its environment. In addition, there is no limitation on illumination changes and occlusions, as well as no restrictions on head movements ranges. The model achieved significant results and efficient performances when tested on unseen data. As the model accuracies were 94%, 99%, 83%, 87%, 93%, 96% for all head gestures (rest, nod, turn, shake, tilt and tilting) respectively. On the other hand, the model accuracy was 99% and 88% for combined and single cues respectively. The aim of this model is to provide a fast application to infer and predict human emotions and affective states in real time through head gestures.
WebologySocial Sciences-Library and Information Sciences
自引率
0.00%
发文量
374
审稿时长
10 weeks
期刊介绍:
Webology is an international peer-reviewed journal in English devoted to the field of the World Wide Web and serves as a forum for discussion and experimentation. It serves as a forum for new research in information dissemination and communication processes in general, and in the context of the World Wide Web in particular. Concerns include the production, gathering, recording, processing, storing, representing, sharing, transmitting, retrieving, distribution, and dissemination of information, as well as its social and cultural impacts. There is a strong emphasis on the Web and new information technologies. Special topic issues are also often seen.