Dai Xiaolin, Sun Xuhong, He Jiacheng, Anxu Li, Dawei Gong
{"title":"Improved Grid-Based Rao-Blackwellized Particle Filter SLAM Based on Grey Wolf Optimizer","authors":"Dai Xiaolin, Sun Xuhong, He Jiacheng, Anxu Li, Dawei Gong","doi":"10.15918/J.JBIT1004-0579.20094","DOIUrl":null,"url":null,"abstract":"In this work, a Rao-Blackwellized particle filter simultaneous localization and mapping based on grey wolf optimizer (called GWO-RBPF) is proposed. The proposed method aims to improve the accuracy of the mapping while maintaining the number of particles. GWO-RBPF utilizes the local exploration and global development ability of the grey wolf optimizer to improve the estimation performance of the Rao-Blackwellized particle filter, so that the low-weight particles can approach high-weight particles. Meanwhile, the pose information of the particles is optimized by the grey wolf optimizer. The proposed method is applied to the benchmark datasets and real-world datasets. The experimental results show that our method outperforms conventional method in terms of map accuracy versus the number of particles.","PeriodicalId":39252,"journal":{"name":"Journal of Beijing Institute of Technology (English Edition)","volume":"30 1","pages":"23-34"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Beijing Institute of Technology (English Edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15918/J.JBIT1004-0579.20094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
In this work, a Rao-Blackwellized particle filter simultaneous localization and mapping based on grey wolf optimizer (called GWO-RBPF) is proposed. The proposed method aims to improve the accuracy of the mapping while maintaining the number of particles. GWO-RBPF utilizes the local exploration and global development ability of the grey wolf optimizer to improve the estimation performance of the Rao-Blackwellized particle filter, so that the low-weight particles can approach high-weight particles. Meanwhile, the pose information of the particles is optimized by the grey wolf optimizer. The proposed method is applied to the benchmark datasets and real-world datasets. The experimental results show that our method outperforms conventional method in terms of map accuracy versus the number of particles.