Improved Grid-Based Rao-Blackwellized Particle Filter SLAM Based on Grey Wolf Optimizer

Q4 Engineering
Dai Xiaolin, Sun Xuhong, He Jiacheng, Anxu Li, Dawei Gong
{"title":"Improved Grid-Based Rao-Blackwellized Particle Filter SLAM Based on Grey Wolf Optimizer","authors":"Dai Xiaolin, Sun Xuhong, He Jiacheng, Anxu Li, Dawei Gong","doi":"10.15918/J.JBIT1004-0579.20094","DOIUrl":null,"url":null,"abstract":"In this work, a Rao-Blackwellized particle filter simultaneous localization and mapping based on grey wolf optimizer (called GWO-RBPF) is proposed. The proposed method aims to improve the accuracy of the mapping while maintaining the number of particles. GWO-RBPF utilizes the local exploration and global development ability of the grey wolf optimizer to improve the estimation performance of the Rao-Blackwellized particle filter, so that the low-weight particles can approach high-weight particles. Meanwhile, the pose information of the particles is optimized by the grey wolf optimizer. The proposed method is applied to the benchmark datasets and real-world datasets. The experimental results show that our method outperforms conventional method in terms of map accuracy versus the number of particles.","PeriodicalId":39252,"journal":{"name":"Journal of Beijing Institute of Technology (English Edition)","volume":"30 1","pages":"23-34"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Beijing Institute of Technology (English Edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15918/J.JBIT1004-0579.20094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, a Rao-Blackwellized particle filter simultaneous localization and mapping based on grey wolf optimizer (called GWO-RBPF) is proposed. The proposed method aims to improve the accuracy of the mapping while maintaining the number of particles. GWO-RBPF utilizes the local exploration and global development ability of the grey wolf optimizer to improve the estimation performance of the Rao-Blackwellized particle filter, so that the low-weight particles can approach high-weight particles. Meanwhile, the pose information of the particles is optimized by the grey wolf optimizer. The proposed method is applied to the benchmark datasets and real-world datasets. The experimental results show that our method outperforms conventional method in terms of map accuracy versus the number of particles.
基于灰狼优化器的改进网格化rao - blackwelzed粒子滤波SLAM
在这项工作中,提出了一种基于灰狼优化器的Rao-Blackellized粒子滤波器同时定位和映射(称为GWO-RBPF)。所提出的方法旨在提高映射的准确性,同时保持粒子的数量。GWO-RBPF利用灰狼优化器的局部探索和全局开发能力,提高了Rao-Blackellized粒子滤波器的估计性能,使低权重粒子能够接近高权重粒子。同时,利用灰狼优化器对粒子的姿态信息进行优化。将所提出的方法应用于基准数据集和真实世界数据集。实验结果表明,我们的方法在映射精度和粒子数量方面优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
2437
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信