{"title":"Natural convective flow in circular and arc cavities filled with water-cu nanofluid: a comparative study","authors":"K. F. U. Ahmed, R. Nasrin, M. Elias","doi":"10.3329/JNAME.V15I1.33549","DOIUrl":null,"url":null,"abstract":"The fluid flow and heat transfer mechanism on steady state solutions obtained in circular and arc-square enclosures filled with water/Cu nanofluid as well as base fluid has been investigated numerically by Galerkin's weighted residual finite element procedure. The left and right boundaries of the cavities are, respectively, heated and cooled at constant temperatures, while their horizontal walls are adiabatic. Effects of buoyancy force (Rayleigh number) and viscous force (Prandtl number) with a wide range of Ra (103 - 106) and Pr (4.2 - 6.2) on heat transfer phenomenon inside cavities are observed. The fluid flow and temperature gradient are shown by streamlines and isotherms patterns. From the investigation, it is reported that the Rayleigh and Prandtl numbers are playing significant role in heat transfer rate. The variation in heat transfer is calculated in terms of average Nusselt number. Heat transfer rate is found to be higher for water/Cu nanofluid with 2% solid volume fraction than pure water. About 2.7% higher heat transfer rate is obtained for circular cavity than that of arc cavity using water/Cu nanofluid at Ra = 104 and Pr = 5.8.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3329/JNAME.V15I1.33549","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/JNAME.V15I1.33549","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8
Abstract
The fluid flow and heat transfer mechanism on steady state solutions obtained in circular and arc-square enclosures filled with water/Cu nanofluid as well as base fluid has been investigated numerically by Galerkin's weighted residual finite element procedure. The left and right boundaries of the cavities are, respectively, heated and cooled at constant temperatures, while their horizontal walls are adiabatic. Effects of buoyancy force (Rayleigh number) and viscous force (Prandtl number) with a wide range of Ra (103 - 106) and Pr (4.2 - 6.2) on heat transfer phenomenon inside cavities are observed. The fluid flow and temperature gradient are shown by streamlines and isotherms patterns. From the investigation, it is reported that the Rayleigh and Prandtl numbers are playing significant role in heat transfer rate. The variation in heat transfer is calculated in terms of average Nusselt number. Heat transfer rate is found to be higher for water/Cu nanofluid with 2% solid volume fraction than pure water. About 2.7% higher heat transfer rate is obtained for circular cavity than that of arc cavity using water/Cu nanofluid at Ra = 104 and Pr = 5.8.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.