Real-Variable Characterizations of Hardy–Lorentz Spaces on Spaces of Homogeneous Type with Applications to Real Interpolation and Boundedness of Calderón–Zygmund Operators

Pub Date : 2020-01-01 DOI:10.1515/agms-2020-0109
Xilin Zhou, Ziyi He, Dachun Yang
{"title":"Real-Variable Characterizations of Hardy–Lorentz Spaces on Spaces of Homogeneous Type with Applications to Real Interpolation and Boundedness of Calderón–Zygmund Operators","authors":"Xilin Zhou, Ziyi He, Dachun Yang","doi":"10.1515/agms-2020-0109","DOIUrl":null,"url":null,"abstract":"Abstract Let (𝒳, d, μ) be a space of homogeneous type, in the sense of Coifman and Weiss, with the upper dimension ω. Assume that η ∈(0, 1) is the smoothness index of the wavelets on 𝒳 constructed by Auscher and Hytönen. In this article, via grand maximal functions, the authors introduce the Hardy–Lorentz spaces H*p,q(𝒳) H_*^{p,q}\\left( \\mathcal{X} \\right) with the optimal range p∈(ωω+η,∞) p \\in \\left( {{\\omega \\over {\\omega + \\eta }},\\infty } \\right) and q ∈ (0, ∞]. When and p∈(ωω+η,1] p \\in ({\\omega \\over {\\omega + \\eta }},1] q ∈ (0, ∞], the authors establish its real-variable characterizations, respectively, in terms of radial maximal functions, non-tangential maximal functions, atoms, molecules, and various Littlewood–Paley functions. The authors also obtain its finite atomic characterization. As applications, the authors establish a real interpolation theorem on Hardy–Lorentz spaces, and also obtain the boundedness of Calderón–Zygmund operators on them including the critical cases. The novelty of this article lies in getting rid of the reverse doubling assumption of μ by fully using the geometrical properties of 𝒳 expressed via its dyadic reference points and dyadic cubes and, moreover, the results in the case q ∈ (0, 1) of this article are also new even when 𝒳 satisfies the reverse doubling condition.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2020-0109","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2020-0109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Abstract Let (𝒳, d, μ) be a space of homogeneous type, in the sense of Coifman and Weiss, with the upper dimension ω. Assume that η ∈(0, 1) is the smoothness index of the wavelets on 𝒳 constructed by Auscher and Hytönen. In this article, via grand maximal functions, the authors introduce the Hardy–Lorentz spaces H*p,q(𝒳) H_*^{p,q}\left( \mathcal{X} \right) with the optimal range p∈(ωω+η,∞) p \in \left( {{\omega \over {\omega + \eta }},\infty } \right) and q ∈ (0, ∞]. When and p∈(ωω+η,1] p \in ({\omega \over {\omega + \eta }},1] q ∈ (0, ∞], the authors establish its real-variable characterizations, respectively, in terms of radial maximal functions, non-tangential maximal functions, atoms, molecules, and various Littlewood–Paley functions. The authors also obtain its finite atomic characterization. As applications, the authors establish a real interpolation theorem on Hardy–Lorentz spaces, and also obtain the boundedness of Calderón–Zygmund operators on them including the critical cases. The novelty of this article lies in getting rid of the reverse doubling assumption of μ by fully using the geometrical properties of 𝒳 expressed via its dyadic reference points and dyadic cubes and, moreover, the results in the case q ∈ (0, 1) of this article are also new even when 𝒳 satisfies the reverse doubling condition.
分享
查看原文
齐型空间上Hardy–Lorentz空间的实变量特征及其在实插值和Calderón–Zygmund算子有界性中的应用
设(f, d, μ)是Coifman和Weiss意义上的齐次型空间,其上维数为ω。设η∈(0,1)是由Auscher和Hytönen构造的小波的光滑指数。本文通过极大函数,引入了Hardy-Lorentz空间H*p,q(∈)H_*^{p,q}\left( \mathcal{X} \right),最优范围p∈(ωω+η,∞)p \in \left( {{\omega \over {\omega + \eta }},\infty } \right),且q∈(0,∞)。和p∈(ωω+η,1) p \in ({\omega \over {\omega + \eta }},1] q∈(0,∞),分别用径向极大函数、非切向极大函数、原子、分子和各种Littlewood-Paley函数建立了它的实变量刻画。作者还得到了它的有限原子性质。作为应用,作者在Hardy-Lorentz空间上建立了一个实插值定理,并得到了Calderón-Zygmund算子的有界性,包括临界情况。本文的新颖之处在于充分利用了由其并矢参考点和并矢立方体表示的函数的几何性质,消除了μ的反向加倍假设,并且在满足反向加倍条件的情况下,对于q∈(0,1),本文的结果也是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信