Approximation and accumulation results of holomorphic mappings with dense image

Pub Date : 2022-11-10 DOI:10.7146/math.scand.a-136450
Giovanni Domenico Di Salvo
{"title":"Approximation and accumulation results of holomorphic mappings with dense image","authors":"Giovanni Domenico Di Salvo","doi":"10.7146/math.scand.a-136450","DOIUrl":null,"url":null,"abstract":"We present four approximation theorems for manifold–valued mappings. The first one approximates holomorphic embeddings on pseudoconvex domains in $\\mathbb{C}^n$ with holomorphic embeddings with dense images. The second theorem approximates holomorphic mappings on complex manifolds with bounded images with holomorphic mappings with dense images. The last two theorems work the other way around, constructing (in different settings) sequences of holomorphic mappings (embeddings in the first one) converging to a mapping with dense image defined on a given compact minus certain points (thus in general not holomorphic).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-136450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present four approximation theorems for manifold–valued mappings. The first one approximates holomorphic embeddings on pseudoconvex domains in $\mathbb{C}^n$ with holomorphic embeddings with dense images. The second theorem approximates holomorphic mappings on complex manifolds with bounded images with holomorphic mappings with dense images. The last two theorems work the other way around, constructing (in different settings) sequences of holomorphic mappings (embeddings in the first one) converging to a mapping with dense image defined on a given compact minus certain points (thus in general not holomorphic).
分享
查看原文
密象全纯映射的逼近和积累结果
我们给出了流形值映射的四个近似定理。第一个用具有稠密图像的全纯嵌入逼近$\mathbb{C}^n$中伪凸域上的全纯嵌。第二个定理用具有稠密映象的全纯映象逼近具有有界映象的复流形上的全纯映射。最后两个定理以另一种方式工作,(在不同的设置中)构造全纯映射序列(第一个中的嵌入),收敛到在给定紧致上定义的稠密图像减去某些点的映射(因此通常不是全纯的)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信