Undecidable Translational Tilings with Only Two Tiles, or One Nonabelian Tile.

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Discrete & Computational Geometry Pub Date : 2023-01-01 Epub Date: 2023-01-04 DOI:10.1007/s00454-022-00426-4
Rachel Greenfeld, Terence Tao
{"title":"Undecidable Translational Tilings with Only Two Tiles, or One Nonabelian Tile.","authors":"Rachel Greenfeld, Terence Tao","doi":"10.1007/s00454-022-00426-4","DOIUrl":null,"url":null,"abstract":"<p><p>We construct an example of a group <math><mrow><mi>G</mi><mo>=</mo><msup><mrow><mi>Z</mi></mrow><mn>2</mn></msup><mo>×</mo><msub><mi>G</mi><mn>0</mn></msub></mrow></math> for a finite abelian group <math><msub><mi>G</mi><mn>0</mn></msub></math>, a subset <i>E</i> of <math><msub><mi>G</mi><mn>0</mn></msub></math>, and two finite subsets <math><mrow><msub><mi>F</mi><mn>1</mn></msub><mo>,</mo><msub><mi>F</mi><mn>2</mn></msub></mrow></math> of <i>G</i>, such that it is undecidable in ZFC whether <math><mrow><msup><mrow><mi>Z</mi></mrow><mn>2</mn></msup><mo>×</mo><mi>E</mi></mrow></math> can be tiled by translations of <math><mrow><msub><mi>F</mi><mn>1</mn></msub><mo>,</mo><msub><mi>F</mi><mn>2</mn></msub></mrow></math>. In particular, this implies that this tiling problem is <i>aperiodic</i>, in the sense that (in the standard universe of ZFC) there exist translational tilings of <i>E</i> by the tiles <math><mrow><msub><mi>F</mi><mn>1</mn></msub><mo>,</mo><msub><mi>F</mi><mn>2</mn></msub></mrow></math>, but no periodic tilings. Previously, such aperiodic or undecidable translational tilings were only constructed for sets of eleven or more tiles (mostly in <math><msup><mrow><mi>Z</mi></mrow><mn>2</mn></msup></math>). A similar construction also applies for <math><mrow><mi>G</mi><mo>=</mo><msup><mrow><mi>Z</mi></mrow><mi>d</mi></msup></mrow></math> for sufficiently large <i>d</i>. If one allows the group <math><msub><mi>G</mi><mn>0</mn></msub></math> to be non-abelian, a variant of the construction produces an undecidable translational tiling with only one tile <i>F</i>. The argument proceeds by first observing that a single tiling equation is able to encode an arbitrary system of tiling equations, which in turn can encode an arbitrary system of certain functional equations once one has two or more tiles. In particular, one can use two tiles to encode tiling problems for an arbitrary number of tiles.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"1 1","pages":"1652-1706"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10676348/pdf/","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-022-00426-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/4 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 8

Abstract

We construct an example of a group G=Z2×G0 for a finite abelian group G0, a subset E of G0, and two finite subsets F1,F2 of G, such that it is undecidable in ZFC whether Z2×E can be tiled by translations of F1,F2. In particular, this implies that this tiling problem is aperiodic, in the sense that (in the standard universe of ZFC) there exist translational tilings of E by the tiles F1,F2, but no periodic tilings. Previously, such aperiodic or undecidable translational tilings were only constructed for sets of eleven or more tiles (mostly in Z2). A similar construction also applies for G=Zd for sufficiently large d. If one allows the group G0 to be non-abelian, a variant of the construction produces an undecidable translational tiling with only one tile F. The argument proceeds by first observing that a single tiling equation is able to encode an arbitrary system of tiling equations, which in turn can encode an arbitrary system of certain functional equations once one has two or more tiles. In particular, one can use two tiles to encode tiling problems for an arbitrary number of tiles.

不可确定的平移瓷砖只有两个瓷砖,或一个非abel瓷砖
对于有限阿贝尔群G0, G0的子集E, G的两个有限子集F1,F2,构造了一个群G=Z2×G0的例子,使得在ZFC中F1,F2的平移是否可以平铺Z2×E是不可确定的。特别地,这意味着这个平铺问题是非周期的,在某种意义上(在ZFC的标准宇宙中)存在E通过平铺F1,F2,但没有周期平铺。以前,这种非周期性或不可确定的平动瓷砖仅用于11个或更多瓷砖的组合(主要在Z2中)。对于足够大的d,类似的构造也适用于G=Zd。如果允许群G0是非阿贝尔的,则构造的变体产生只有一个瓦片f的不可确定的平移瓦片。论证通过首先观察到单个瓦片方程能够编码一个瓦片方程的任意系统,而一旦有两个或更多的瓦片,该系统又可以编码某个函数方程的任意系统。特别是,可以使用两个贴图来编码任意数量的贴图的贴图问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信