{"title":"General degree distance of graphs","authors":"T. Vetrík","doi":"10.13069/JACODESMATH.935980","DOIUrl":null,"url":null,"abstract":"We generalize several topological indices and introduce the general degree distance of a connected graph $G$. For $a, b \\in \\mathbb{R}$, the general degree distance $DD_{a,b} (G) = \\sum_{ v \\in V(G)} [deg_{G}(v)]^a S^b_{G} (v)$, where $V(G)$ is the vertex set of $G$, $deg_G (v)$ is the degree of a vertex $v$, $S^b_{G} (v) = \\sum_{ w \\in V(G) \\setminus \\{ v \\} } [d_{G} (v,w) ]^{b}$ and $d_{G} (v,w)$ is the distance between $v$ and $w$ in $G$. We present some sharp bounds on the general degree distance for multipartite graphs and trees of given order, graphs of given order and chromatic number, graphs of given order and vertex connectivity, and graphs of given order and number of pendant vertices.","PeriodicalId":37029,"journal":{"name":"Journal of Algebra Combinatorics Discrete Structures and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra Combinatorics Discrete Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13069/JACODESMATH.935980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
We generalize several topological indices and introduce the general degree distance of a connected graph $G$. For $a, b \in \mathbb{R}$, the general degree distance $DD_{a,b} (G) = \sum_{ v \in V(G)} [deg_{G}(v)]^a S^b_{G} (v)$, where $V(G)$ is the vertex set of $G$, $deg_G (v)$ is the degree of a vertex $v$, $S^b_{G} (v) = \sum_{ w \in V(G) \setminus \{ v \} } [d_{G} (v,w) ]^{b}$ and $d_{G} (v,w)$ is the distance between $v$ and $w$ in $G$. We present some sharp bounds on the general degree distance for multipartite graphs and trees of given order, graphs of given order and chromatic number, graphs of given order and vertex connectivity, and graphs of given order and number of pendant vertices.