Properties of a subclass of analytic functions defined by Riemann-Liouville fractional integral applied to convolution product of multiplier transformation and Ruscheweyh derivative

IF 2 3区 数学 Q1 MATHEMATICS
A. Alb Lupaș, M. Acu
{"title":"Properties of a subclass of analytic functions defined by Riemann-Liouville fractional integral applied to convolution product of multiplier transformation and Ruscheweyh derivative","authors":"A. Alb Lupaș, M. Acu","doi":"10.1515/dema-2022-0249","DOIUrl":null,"url":null,"abstract":"Abstract The contribution of fractional calculus in the development of different areas of research is well known. This article presents investigations involving fractional calculus in the study of analytic functions. Riemann-Liouville fractional integral is known for its extensive applications in geometric function theory. New contributions were previously obtained by applying the Riemann-Liouville fractional integral to the convolution product of multiplier transformation and Ruscheweyh derivative. For the study presented in this article, the resulting operator is used following the line of research that concerns the study of certain new subclasses of analytic functions using fractional operators. Riemann-Liouville fractional integral of the convolution product of multiplier transformation and Ruscheweyh derivative is applied here for introducing a new class of analytic functions. Investigations regarding this newly introduced class concern the usual aspects considered by researchers in geometric function theory targeting the conditions that a function must meet to be part of this class and the properties that characterize the functions that fulfil these conditions. Theorems and corollaries regarding neighborhoods and their inclusion relation involving the newly defined class are stated, closure and distortion theorems are proved, and coefficient estimates are obtained involving the functions belonging to this class. Geometrical properties such as radii of convexity, starlikeness, and close-to-convexity are also obtained for this new class of functions.","PeriodicalId":10995,"journal":{"name":"Demonstratio Mathematica","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Demonstratio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2022-0249","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The contribution of fractional calculus in the development of different areas of research is well known. This article presents investigations involving fractional calculus in the study of analytic functions. Riemann-Liouville fractional integral is known for its extensive applications in geometric function theory. New contributions were previously obtained by applying the Riemann-Liouville fractional integral to the convolution product of multiplier transformation and Ruscheweyh derivative. For the study presented in this article, the resulting operator is used following the line of research that concerns the study of certain new subclasses of analytic functions using fractional operators. Riemann-Liouville fractional integral of the convolution product of multiplier transformation and Ruscheweyh derivative is applied here for introducing a new class of analytic functions. Investigations regarding this newly introduced class concern the usual aspects considered by researchers in geometric function theory targeting the conditions that a function must meet to be part of this class and the properties that characterize the functions that fulfil these conditions. Theorems and corollaries regarding neighborhoods and their inclusion relation involving the newly defined class are stated, closure and distortion theorems are proved, and coefficient estimates are obtained involving the functions belonging to this class. Geometrical properties such as radii of convexity, starlikeness, and close-to-convexity are also obtained for this new class of functions.
Riemann-Liouville分数积分定义的解析函数的一个子类的性质及其在乘子变换和Ruscheveyh导数的卷积积中的应用
摘要分数微积分在不同研究领域的发展中的贡献是众所周知的。本文介绍了在分析函数研究中涉及分数微积分的研究。黎曼-刘维分数积分以其在几何函数理论中的广泛应用而闻名。先前,通过将黎曼-刘维尔分数积分应用于乘法器变换和Ruscheveyh导数的卷积乘积,获得了新的贡献。对于本文中提出的研究,所得算子的使用遵循了研究路线,该研究涉及使用分数算子研究分析函数的某些新子类。本文应用乘子变换和Ruscheveyh导数的卷积乘积的Riemann-Liouville分数积分,引入了一类新的解析函数。关于这一新引入的类的研究涉及几何函数理论中研究人员考虑的常见方面,目标是函数必须满足的条件才能成为这一类的一部分,以及满足这些条件的函数的特性。给出了涉及新定义类的邻域及其包含关系的定理和推论,证明了闭包和失真定理,并得到了涉及该类函数的系数估计。还得到了这类新函数的几何性质,如凸性半径、星形性和接近凸性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
5.00%
发文量
37
审稿时长
35 weeks
期刊介绍: Demonstratio Mathematica publishes original and significant research on topics related to functional analysis and approximation theory. Please note that submissions related to other areas of mathematical research will no longer be accepted by the journal. The potential topics include (but are not limited to): -Approximation theory and iteration methods- Fixed point theory and methods of computing fixed points- Functional, ordinary and partial differential equations- Nonsmooth analysis, variational analysis and convex analysis- Optimization theory, variational inequalities and complementarity problems- For more detailed list of the potential topics please refer to Instruction for Authors. The journal considers submissions of different types of articles. "Research Articles" are focused on fundamental theoretical aspects, as well as on significant applications in science, engineering etc. “Rapid Communications” are intended to present information of exceptional novelty and exciting results of significant interest to the readers. “Review articles” and “Commentaries”, which present the existing literature on the specific topic from new perspectives, are welcome as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信