Properties of a subclass of analytic functions defined by Riemann-Liouville fractional integral applied to convolution product of multiplier transformation and Ruscheweyh derivative
{"title":"Properties of a subclass of analytic functions defined by Riemann-Liouville fractional integral applied to convolution product of multiplier transformation and Ruscheweyh derivative","authors":"A. Alb Lupaș, M. Acu","doi":"10.1515/dema-2022-0249","DOIUrl":null,"url":null,"abstract":"Abstract The contribution of fractional calculus in the development of different areas of research is well known. This article presents investigations involving fractional calculus in the study of analytic functions. Riemann-Liouville fractional integral is known for its extensive applications in geometric function theory. New contributions were previously obtained by applying the Riemann-Liouville fractional integral to the convolution product of multiplier transformation and Ruscheweyh derivative. For the study presented in this article, the resulting operator is used following the line of research that concerns the study of certain new subclasses of analytic functions using fractional operators. Riemann-Liouville fractional integral of the convolution product of multiplier transformation and Ruscheweyh derivative is applied here for introducing a new class of analytic functions. Investigations regarding this newly introduced class concern the usual aspects considered by researchers in geometric function theory targeting the conditions that a function must meet to be part of this class and the properties that characterize the functions that fulfil these conditions. Theorems and corollaries regarding neighborhoods and their inclusion relation involving the newly defined class are stated, closure and distortion theorems are proved, and coefficient estimates are obtained involving the functions belonging to this class. Geometrical properties such as radii of convexity, starlikeness, and close-to-convexity are also obtained for this new class of functions.","PeriodicalId":10995,"journal":{"name":"Demonstratio Mathematica","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Demonstratio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2022-0249","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The contribution of fractional calculus in the development of different areas of research is well known. This article presents investigations involving fractional calculus in the study of analytic functions. Riemann-Liouville fractional integral is known for its extensive applications in geometric function theory. New contributions were previously obtained by applying the Riemann-Liouville fractional integral to the convolution product of multiplier transformation and Ruscheweyh derivative. For the study presented in this article, the resulting operator is used following the line of research that concerns the study of certain new subclasses of analytic functions using fractional operators. Riemann-Liouville fractional integral of the convolution product of multiplier transformation and Ruscheweyh derivative is applied here for introducing a new class of analytic functions. Investigations regarding this newly introduced class concern the usual aspects considered by researchers in geometric function theory targeting the conditions that a function must meet to be part of this class and the properties that characterize the functions that fulfil these conditions. Theorems and corollaries regarding neighborhoods and their inclusion relation involving the newly defined class are stated, closure and distortion theorems are proved, and coefficient estimates are obtained involving the functions belonging to this class. Geometrical properties such as radii of convexity, starlikeness, and close-to-convexity are also obtained for this new class of functions.
期刊介绍:
Demonstratio Mathematica publishes original and significant research on topics related to functional analysis and approximation theory. Please note that submissions related to other areas of mathematical research will no longer be accepted by the journal. The potential topics include (but are not limited to): -Approximation theory and iteration methods- Fixed point theory and methods of computing fixed points- Functional, ordinary and partial differential equations- Nonsmooth analysis, variational analysis and convex analysis- Optimization theory, variational inequalities and complementarity problems- For more detailed list of the potential topics please refer to Instruction for Authors. The journal considers submissions of different types of articles. "Research Articles" are focused on fundamental theoretical aspects, as well as on significant applications in science, engineering etc. “Rapid Communications” are intended to present information of exceptional novelty and exciting results of significant interest to the readers. “Review articles” and “Commentaries”, which present the existing literature on the specific topic from new perspectives, are welcome as well.