Nurhania Nurhania, S. Syarifuddin, B. Armynah, D. Tahir
{"title":"Fiber-reinforced polymer composite: Higher performance with renewable and eco-friendly plant-based fibers","authors":"Nurhania Nurhania, S. Syarifuddin, B. Armynah, D. Tahir","doi":"10.1177/20412479231173113","DOIUrl":null,"url":null,"abstract":"Considering sustainable environmental problems due to waste and the enormous potential of natural plant resources in producing natural fibers has encouraged researchers to make environmentally friendly composite materials reinforced with fibers. Several articles on using natural fibers as composite reinforcement have been collected and studied to produce this article. This article aims to comprehensively describe the physical properties, chemical composition, factors that affect fiber quality, and their relationship with mechanical properties. In the first section, we introduce the general classification of plant fibers and summarize the annual production and category of fiber origin used for fiber-reinforced composites. It then presents the parts of plants and plant species for fiber, including fruit, leaf, and seed fibers, and discuss their characteristics. Further describes the chemical compounds and physical and mechanical properties based on fiber sources. Based on our discussion, this review shows that plant fibers are very suitable as an alternative to polymer-based reinforcement materials due to low cost, renewable, and environmentally friendly composites. However, compatibility with synthetic polymers, dimensional stability and processability must be actively considered to replace synthetic fibers in various applications.","PeriodicalId":20353,"journal":{"name":"Polymers from Renewable Resources","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers from Renewable Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20412479231173113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 5
Abstract
Considering sustainable environmental problems due to waste and the enormous potential of natural plant resources in producing natural fibers has encouraged researchers to make environmentally friendly composite materials reinforced with fibers. Several articles on using natural fibers as composite reinforcement have been collected and studied to produce this article. This article aims to comprehensively describe the physical properties, chemical composition, factors that affect fiber quality, and their relationship with mechanical properties. In the first section, we introduce the general classification of plant fibers and summarize the annual production and category of fiber origin used for fiber-reinforced composites. It then presents the parts of plants and plant species for fiber, including fruit, leaf, and seed fibers, and discuss their characteristics. Further describes the chemical compounds and physical and mechanical properties based on fiber sources. Based on our discussion, this review shows that plant fibers are very suitable as an alternative to polymer-based reinforcement materials due to low cost, renewable, and environmentally friendly composites. However, compatibility with synthetic polymers, dimensional stability and processability must be actively considered to replace synthetic fibers in various applications.
期刊介绍:
Polymers from Renewable Resources, launched in 2010, publishes leading peer reviewed research that is focused on the development of renewable polymers and their application in the production of industrial, consumer, and medical products. The progressive decline of fossil resources, together with the ongoing increases in oil prices, has initiated an increase in the search for alternatives based on renewable resources for the production of energy. The prevalence of petroleum and carbon based chemistry for the production of organic chemical goods has generated a variety of initiatives aimed at replacing fossil sources with renewable counterparts. In particular, major efforts are being conducted in polymer science and technology to prepare macromolecular materials based on renewable resources. Also gaining momentum is the utilisation of vegetable biomass either by the separation of its components and their development or after suitable chemical modification. This journal is a valuable addition to academic, research and industrial libraries, research institutions dealing with the use of natural resources and materials science and industrial laboratories concerned with polymer science.