{"title":"Measuring financial performance of Indian manufacturing firms: application of decision tree algorithms","authors":"R. L. Manogna, A. Mishra","doi":"10.1108/MBE-05-2020-0073","DOIUrl":null,"url":null,"abstract":"\nPurpose\nDetermining the relevant information using financial measures is of great interest for various stakeholders to analyze the performance of the firm. This paper aims at identifying these financial measures (ratios) which critically affect the firm performance. The authors specifically focus on discovering the most prominent ratios using a two-step process. First, the authors use an exploratory factor analysis to identify the underlying dimensions of these ratios, followed by predictive modeling techniques to identify the potential relationship between measures and performance.\n\n\nDesign/methodology/approach\nThe study uses data of 25 financial variables for a sample of 1923 Indian manufacturing firms which exist continuously between 2011 and 2018. For prediction models, four popular decision tree algorithms [Chi-squared automatic interaction detector (CHAID), classification and regression trees (C&RT), C5.0 and quick, unbiased, efficient statistical tree (QUEST)] were investigated, and the information fusion-based sensitivity analyses were performed to identify the relative importance of these input measures.\n\n\nFindings\nResults show that C5.0 and CHAID algorithms produced the best predictive results. The fusion sensitivity results find that net profit margin and total assets turnover rate are the most critical factors determining the firm performance in an Indian manufacturing context. These findings may enable managers in their decision-making process and also have vital implications for investors in assessing the performance of the firm.\n\n\nOriginality/value\nTo the best of the authors’ knowledge, the current paper is the first to address the application of decision tree algorithms to predict the performance of manufacturing firms in an emerging economy such as India, with the latest data. This practical perspective helps the organizations in managing the critical parameters for the firm’s growth.\n","PeriodicalId":18468,"journal":{"name":"Measuring Business Excellence","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measuring Business Excellence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/MBE-05-2020-0073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 10
Abstract
Purpose
Determining the relevant information using financial measures is of great interest for various stakeholders to analyze the performance of the firm. This paper aims at identifying these financial measures (ratios) which critically affect the firm performance. The authors specifically focus on discovering the most prominent ratios using a two-step process. First, the authors use an exploratory factor analysis to identify the underlying dimensions of these ratios, followed by predictive modeling techniques to identify the potential relationship between measures and performance.
Design/methodology/approach
The study uses data of 25 financial variables for a sample of 1923 Indian manufacturing firms which exist continuously between 2011 and 2018. For prediction models, four popular decision tree algorithms [Chi-squared automatic interaction detector (CHAID), classification and regression trees (C&RT), C5.0 and quick, unbiased, efficient statistical tree (QUEST)] were investigated, and the information fusion-based sensitivity analyses were performed to identify the relative importance of these input measures.
Findings
Results show that C5.0 and CHAID algorithms produced the best predictive results. The fusion sensitivity results find that net profit margin and total assets turnover rate are the most critical factors determining the firm performance in an Indian manufacturing context. These findings may enable managers in their decision-making process and also have vital implications for investors in assessing the performance of the firm.
Originality/value
To the best of the authors’ knowledge, the current paper is the first to address the application of decision tree algorithms to predict the performance of manufacturing firms in an emerging economy such as India, with the latest data. This practical perspective helps the organizations in managing the critical parameters for the firm’s growth.
期刊介绍:
Measuring Business Excellence provides international insights into non-financial ways to measure and manage business performance improvements and company’s value creation dynamics. Measuring Business Excellence will enable you to apply best practice, implement innovative thinking and learn how to use different practices. Learn how to use innovative frameworks, approaches and practices for understanding, assessing and managing the strategic value drivers of business excellence. MBE publishes both rigorous academic research and insightful practical experiences about the development and adoption of assessment and management models, tools and approaches to support excellence and value creation of 21st century organizations both private and public.